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Corn ethanol plants have been criticized for a number of reasons in recent years. This paper provides another
ground for criticizing these plants. Historical corn and gasoline prices are uncorrelated, but widespread adoption
of corn ethanol production might reasonably lead to future correlation between these prices. We present a real
options— like valuation of an ethanol plant as a spark spread between the corn price and the gasoline price. This
analysis shows that the value of an ethanol plant monotonically decreases with increasing correlation and the
optimal production schedule greatly depends on the correlation. Even relatively small new correlations can result
in a significant proportional value decrease; a 50% correlation between corn and gasoline causes ethanol plants to
lose 10% of their value. The limiting case of full correlation would lead to a 30% value loss.
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1. Introduction

In recent years it has become both politically and, to a lesser extent,
environmentally popular to produce fuel ethanol from corn (this is
different from sugar cane ethanol which is used in Brazil). This process
has also received some criticism. One criticism that has been advanced
is that the process is energy negative — that more oil is used to grow
the corn and convert it into ethanol than is produced in the process
(Kim and Dale, 2005; Patzek et al., 2005; Pimentel, 2003; Shapouri
et al., 2002).We do not enter that particular debate here except insofar
as to note that corn ethanol production must receive government
subsidies to be economically attractive (Koplow, 2006). Another
criticism is that converting corn production from food or feed use to
fuel use is responsible for an increase in food prices with concomitant
ill effects for the world's poor (Pimentel and Patzek, 2005).

In this paper we do not address the relationship between corn
ethanol production and food prices directly, but rather consider the
possibility that widespread ethanol production will cause the price of
gasoline and the price of corn, which historically have been nearly
uncorrelated, to become more highly correlated in the future. We
present calculations which suggest that possible future correlations
between corn and gas prices may impact the level of public subsidy
required in order to prevent the value of ethanol plants from being
destroyed. To show this, wemodel an ethanol plant as a real option on
the appropriate weighted spread between gasoline (output) and corn
(input) prices.We use the real options framework (seeWilmott, 2000)
because recent historical experience suggests that ethanol plants may
not always be economically advantageous to operate even with a
subsidy; however in this case the plant itself still retains value because
of the ability it represents to profitably run in the future. The resulting
model may be computed using a variety of techniques including a
bootstrap-based simulation. With the aid of this model we are able to
quantify the value destroyed, for a realistic but simplified model
ethanol plant, by a given level of future corn-gasoline correlation. We
draw public policy conclusions from this result.

Section 2 provides insight froma simpleMargrabe option valuation
to show that ethanol plant value loss is inevitable. Section 3 introduces
the idea of a spark spread option and derives the formula for valuing an
ethanol plant using this approach. Historical spot price data is used in
applying the formulation in Section 4. In Section 5we explore corn and
gasoline price dynamics in order to generate price sequences for both
commodities using a bootstrapping technique in Section 6. These price
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sequences are generated with a specified level of correlation between
the commodity prices, and the effects of increasing correlation are
reported. A more thorough discussion of the results is provided in
Section 7.

2. A simple Margrabe options lesson

AMargrabe exchange option is a contract which gives the owner the
right, but not the obligation, to exchange b units of an asset S1 for a units
of an asset S2 at maturity T (Margrabe, 1978). The payoff is therefore

ðaS1ðTÞ−bS2ðTÞÞþ: ð1Þ

Since we want to continuously make the decision of whether or
not to convert corn to ethanol, we can consider our problem a strip of
exchange options, each having a payoff similar to Eq. (1). The
advantage of this consideration is that there is a formula for valuing
exchange options; the formula is given below.

M = S1e
ðμ1−rÞτNðd1Þ−S2e

ðμ2−rÞτNðd2Þ ð2Þ

where

d1 = ln S1 = S2ð Þ + ðμ1−μ2 + σ2
= 2Þτ

σ
ffiffiffi
τ

p ;

d2 = d1−σ
ffiffiffi
τ

p
;

σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1 + σ2

2−2ρσ1σ2

q

and τ is the time until expiry.
We use this formula to build intuition regarding the effect of

varying the correlation ρ: it is clear from the above equation for σ that
as ρ increases, σ decreases. If we look at the corresponding effect on
Eq. (2) it is easy to see that as ρ increases, M decreases. This is shown
in Fig. 1 for an initial fixed corn and gasoline price pair.

Since in a Margrabe-type option the exchange happens just once, at
time T, this valuation is not sufficient for our problem. At each time twe
wish to examine thedifference between thepriceof cornand gasoline to
make a decision. Thus, we rely on other existing tools to value a corn
ethanol plant which allow us to continuously make decisions.
Fig. 1. The Margrabe parameter σ as ρ increases (dashed line), and the value of the
option (M) as ρ increases (solid line). Parameter values: σ1=0.3252, σ2=0.3252, μ1=
−0.0265, μ2=0.0125, r=0.04, and S1(0)=S2(0)=2.
3. Spark spread options

Spread options are extremely valuable decision making tools in
situations where the difference between the prices of two assets
determines the economic value of an operation. Spark spread options
are used in electricity generation where the spread between the price
of fuel input and electricity output is examined in order to decide
whether or not to run a particular generation asset (Deng et al., 1994).

Ethanol producers can use spark spreads in a similar way. They can
examine the appropriate spread between corn (input) and gasoline
(output) to determinewhether or not theywill be profitable at a given
time. If the spread becomes negative, they have a decision to make:
should the plant run at a loss, or should the plant temporarily shut
down and resume production when the spread becomes positive
again? If the latter approach is taken, the situation is similar to that of
an option where the owner of a contract chooses whether or not to
exercise their right to buy or sell at a given time. We therefore value
the operation as a call–like option where, at each time t, the payoff is

πt = ðHGt−CtÞþ: ð3Þ

Here, π is the profit per unit of gasoline, Gt is the spot price of
gasoline (dollars/gallon), Ct is the spot price of corn (dollars/bushel)
and H is the conversion factor from gasoline to corn units (gallons/
bushel). Thus, the plant is run when

H × gasoline price > corn price;

otherwise it is unprofitable to do so and production should cease. This
valuation method differs greatly from the method of discounted cash
flows, which is likely to undervalue the operation since it does not
capture its flexibility. Unlike a call option, both Gt and Ct are unknown
for tN0. We must compute a suitable range of H values to use in our
simulations. A range of values exist since the energy content of
gasoline and corn is not constant. For instance, gasoline blends may
differ with batch, season and from one refinery to another. The energy
content of one bushel of shelled corn is given by β=448, 000−476,
000 British thermal units (Btus) while the energy content of one
gallon of gasoline is given by γ=115, 000−125, 000 Btus. One bushel
of corn gives approximately α=0.8 bushels of shelled corn. Thus, we
can compute H to be in the range

H =
αβ
γ

≈ 0:8 ×
448;000
125;000

;
476;000
115;000

� �

≈ 2:87−3:31:

Our range of H values are consistent with values used in (Babcock,
2007; Tiffany, 2006) and in our simulations we use the midpoint,
H=3.09.

To add to the realism of this model, we also consider the fact that
ethanol production is highly subsidized. Thus, we add a constant term
(in dollars/gallon) to the gasoline price, which accounts for the
volumetric tax credit given to ethanol producers. In other words, for
each gallon of ethanol produced at a given facility in the US, the facility
receives a subsidy in the form of a tax credit. This subsidy is around
s=60 cents per gallon of ethanol produced (Koplow, 2006). We must
also account for the cost of running the plant. Some plants in the US use
coal and evenmethane fromcowmanure to run their plants, and oneUS
ethanol plant uses excess steam from a nearby power plant. However,
most plants rely onnatural gas, and the associated cost is approximately
p=52 cents/gallon of ethanol produced (Babcock, 2007).



Fig. 2. Corn and gasoline prices, January 1976–December 2006.

Table 1
Average annual spark spread.

Year Plant value ($ million)

1997 $0
1998 $0
1999 $2.94
2000 $13.48
2001 $7.71
2002 $2.95
2003 $7.64
2004 $17.67
2005 $41.57
2006 $47.75
Average Annual Plant Value $14.17
Number of Months plant is running 85 out of 120
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The model, which represents the annual value of the plant, is
therefore given as

ν ∑
12

t=1
max H Gt + s−pð Þ−Ct ;0ð Þ; ð4Þ

where ν is the number of bushels of corn consumed by the plant per
month. Monthly units are used since we are using average monthly
corn and gasoline price data. The source for this data is the CRB
Commodity Yearbook (2007).

4. Retrospective analysis

We first look at historical corn and gas prices as shown in Fig. 2
(Commodity Research Bureau, 2007). Although this figure depicts
31 years of historical data, we will concentrate on data between
January 1997 and December 2006 since it more indicative of the
current markets, especially in the case of gasoline.

Fig. 3 uses Eq. (4) to showwhen the plant was profitable andwhen
it operated at a loss (top panel), on a monthly basis, between January
1997 and December 2006. A value of one on the y-axis represents a
profit during a particular month, and a value of zero represents a loss.
Fig. 3. The bottom panel gives corn price from January 1997 to December 2006 in USD/
bushel; middle panel gives gas price, over same time period, in USD/gallon. Top panel
indicates whether plant should run (in which case a 1 is plotted) or be turned off (in
which case a zero is plotted).
Corresponding monthly corn and gasoline spot price data, respec-
tively, are shown in the bottom panels. All prices are in 2006 dollars.

From this figure it is evident that during the last three years of
data, under the assumptions given in Section 2, an ethanol plant
should be operating at full capacity every month without incurring
any losses. This is due to a major increase in gasoline prices during
those years, without a corresponding large increase in corn prices.
Assuming our future correlation assumption holds, this situation will
be highly unlikely as corn and gasoline markets will tend to go up and
down together. In fact, since 2006 corn prices have increased
substantially so these last three years of data may not be indicative
of the current value of an ethanol plant. We look at how to deal with
this in the next section.

Table 1 shows the average annual value of the plant from 1997
until 2006. The overall average annual value and the total number of
months that the plant operated without incurring losses, assuming
Eq. (4) holds, are also given.

5. Corn and gasoline price dynamics

Since past data is not indicative of the current situation, and may
not be indicative of the future situation, we can only consider it as one
possible scenario. In order to examine multiple scenarios, we must
better understand the dynamics of corn and gasoline prices. To do this,
we examine the data for seasonality, mean reversion and serial
autocorrelation.

We first wish to remove any seasonality which exists in the
commodity prices. In order to do this, we look for a sine wave of
period 12 that best fits the data (see Haberman, 2004 for details on
Fig. 4. Average monthly corn price from January 1997 to December 2006, USD/bushel,
with best fit sinusoid.



Fig. 5. Average monthly gas price from January 1997 to December 2006, USD/gallon,
with best fit sinusoid.

Fig. 6. Log Return(month i) vs. Price(month i) for corn (January 1997 to December
2006).
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this). This is done for both data sets, and from Figs. 4 and 5 it is easily
shown that the best fit sine waves are not representative of the
commodity data. To examine this even further, we determine in
which month corn prices are highest and lowest, and compute the
probabilities of k highs (or lows) in a given month assuming a
completely random draw. The results are given in Tables 2 and 3.

Although obtaining four highs in January is extremely unlikely (it is
0.6% likely to occur at random), there is also a 7% chance that one of the
12 months will show up as an outlier. This, combined with the
apparent randomness of annual lows and the fact that the amplitude
of the sine wave is not reflective of the data range, we can conclude
that the effects of seasonality are at best weak in the corn data and
are nonexistent in the gas data; in this study we ignore seasonality
entirely.

We also consider the possibility of mean reversion in the data.
Figs. 6 and 7 show returns versus prices for both corn and gasoline. If
there was significant mean reversion we would expect the returns to
be higher than average when prices are very low and lower than
averagewhen prices are very high. This is difficult to detect from these
Table 2
Probability of k highs assuming a random draw.

k P(k highs)

0 0.4189
1 0.3808
2 0.1558
3 0.0378
4 0.006

Table 3
Frequency of high/low prices.

Month Number of highs Number of lows

January 4 1
February 0 0
March 0 0
April 2 1
May 2 0
June 0 1
July 0 1
August 0 1
September 1 1
October 0 2
November 0 1
December 1 1
figures, and determining a reliable mean reversion parameter would
be an even more difficult task, so we also neglect mean reversion in
this study.

The final check is for serial autocorrelation in the data. To inspect
this, we plot log return i+1 versus log return i, shown in Fig. 8 . We
find the line of best fit through the data is

y = 0:3271x + 0:0007157 ð5Þ

with R2=0.1074. This value is an indication of how well the
regression line approximates the real data points. If we consider
only the data from the past 10 years, the line of best fit is

y = 0:4311x + 0:0001564 ð6Þ

with R2=0.1845. In both cases, this is a strong signal, suggesting that
there is a linear correlation in the corn data. Thus, we compute the
correlation coefficient and Fisher z statistic to confirm this. In general,
the correlation coefficient between two data sets X and Y is defined as

ρ =
CovðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞVarðYÞp : ð7Þ
Fig. 7. Log Return(month i) vs. Price(month i) for gas (January 1997 to December 2006).



Fig. 8. Log Return(i+1) vs. Log Return(i) for corn (January 1997 to December 2006).
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Since X and Y both represent log returns of the same data set, Var
(X)=Var(Y) and we compute the correlation coefficient to be
ρc=0.4295. The Fisher z statistic transforms the correlation coefficient
into a value which, if the data is actually uncorrelated, is normally
distributedwithmean zero and standard deviation one, and is given is

zF =

ffiffiffiffiffiffiffiffiffiffiffi
N−3

p

2
ln

1 + r
1−r

� �
: ð8Þ

This statistic is found to be zF=4.9679, which means the
probability that the log return data is uncorrelated is extremely
small and confirms that the corn data has significant autocorrelation.

We redo this procedure using the gasoline spot price data as well.
Fig. 9 shows return i+1 versus return i, and the line of best fit passing
through this data is

y = 0:001115x + 0:0005547 ð9Þ

with R2=1.676×10−6. If we consider only the data from the past
10 years, the line of best fit is

y = 0:03148x + 0:006919 ð10Þ
Fig. 9. Log Return(i+1) vs. Log Return(i) for gas (January 1997 to December 2006).
with R2=0.0009948. In both cases the regression line is a poor
approximation to the actual spot data, and so it appears that the data is
random. However, to confirm this we compute the correlation
coefficient and Fisher z statistic. We obtain ρg=0.0315 and
zF=0.3408, confirming that the data does not have significant
autocorrelation.

6. Bootstrap analysis

Now that we better understand the dynamics of corn and gasoline
prices, we can generate new sequences of price data, using the
“bootstrap” technique. We do this using the log returns from the past
ten years. The procedure differs for each commodity due to the
autocorrelation in the corn data. For gasoline data, we sample (with
replacement) from the log returns to generate a new sequence of log
returns. Using the average gasoline price from January 1997 as our
initial price value, we can obtain a new price sequence via

G⁎t + 1 = G⁎t e
Rt ; ð11Þ

where Rt is determined by sampling from the original sequence of log
returns, Rt0= log(Gt+1/Gt).

For corn data we generate an innovation sequence, It, using

It + 1 =
r0t + 1−αr0t

1−α
ð12Þ

where rt
0= log(Ct+1/Ct) and α=ρc=0.4295. From this sequence we

can generate a new sequence, Et, by sampling with replacement. We
can obtain a new price sequence using

rt + 1 = αrt + ð1−αÞEt ð13Þ

and

C⁎t + 1 = C⁎t e
rt ; ð14Þ

where r1=E1 and C1⁎ is the average corn price from January 1997.
The results are somewhat surprising. The average value of the

plant is found to be approximately $42 million, and the plant is
expected to run profitably 64 months out of 120. This means that
although the option value is zero for several realizations, other
realizations give such large option values that, on average, the plant is
extremely profitable. However, a closer look at the simulation values
shows that, in several cases, corn and gas prices are unrealistically
high or low, and hence the average option value is not a good
indication of actual plant value. Thus, we place restrictions on the
simulated price values: if corn or gasoline prices exceed a certain
value, or fall below a certain value, the simulation is not used. Note
that this pruning of unrealistic paths is in some ways similar to the
assumption of mean reversion in the return data – mean reversion
that was not observable in the data. Mean reversion is notoriously
difficult to measure in data sets which, like the ones used here, never
move very far from their mean value. Depending on the size of the
restriction a large percentage of the simulations may be omitted. For
instance, when we use the restrictions 1bCtb15 and 0.2bGtb10,
about 30% of the simulations are excluded. Using these ranges the
average option value is approximately $25 million and the plant is
expected to run at a profit 61 months out of 120. Figs. 10 and 11 are
histograms showing the range and frequency of option values for all
included simulations as well as the frequency of losses over the
120 month period.

The above technique does not include the possibility of a future
correlation between commodity prices. To do this, suppose a boot-
strapped sequence of corn and gasoline returns are denoted by rt and



Fig. 10. Frequency of average monthly option values over the 10 year period; 10,000
simulations are used.

Fig. 12. The solid line represents the average annual plant value with increasing
correlation. The dashed lines represent the one standard error range in these
calculations.
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Rt respectively. We induce correlation between these sequences by
creating a new gasoline return sequence Rt

1 as follows:

R1
t = ρrt + ð1−ρÞR0

t

h i
×

R
―

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 r― 2

t + ð1−ρÞ2 R― 2
t

q : ð15Þ

Here R
_
t and r

_
t are the average values of the bootstrapped log

return sequences, and thus change with each simulation. This means
that future gasoline returns do not only depend on past gasoline
returns, but they also depend on the corn return in the same period.
The amount by which gasoline returns depend on corn returns is the
correlation ρ. We can use Eqs. (11) and (14) to obtain new price
sequenceswhere the gasoline price at time t depends on both the corn
and gasoline log returns from the past. Since we have no way of
accurately determining the future correlation of corn and gas prices,
we use a variety of ρ values to examine what happens to the value of
the plant in these cases, as well as what happens to the number of
months that the plant is down. The results are given in Fig. 12. It is
evident from this graph that even if corn and gasoline prices become
moderately correlated, the value of the plant is substantially lower
than when correlation is neglected. For instance, a 50% correlation
would mean that profits would be 10% less than if the correlation was
Fig. 11. Frequency of plant losses over the 10 year period; 10,000 simulations are used
and losses are computed monthly.
zero. Moreover, as correlation increases, the value monotonically
decreases, and even more financial losses are expected as the
correlation approaches one. If the prices are perfectly correlated,
profits would be 30% less than the expected profit given a zero
correlation assumption.

We also look at the number of months the plant is shut down
(Fig. 13) and notice that it is generally increasing with increasing
correlation. This means that, although the plant is running more,
when it is running it is making less profit. As correlation increases,
corn and gas prices will tend upward and downward together more
often. Situations where corn prices decrease substantially and gas
prices increase substantially at the same time are now very unlikely.
Thus, the opportunity to take advantage of this large positive spread
has been eliminated, and ethanol producers see smaller positive
spreads more often.

7. Discussion and conclusions

This paper develops a robust framework for exploring the optimal
operation of an ethanol plant. Since historical data may not be an
Fig. 13. The solid line represents the number of months the plant is running with
increasing correlation. The dashed lines represent the one standard error range in these
calculations.
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accurate representation of future prices we can consider the time
series for corn and gasoline as a single realization, with considerably
low corn prices throughout making up for low gas prices in the first
several months of the time window. This may explain why the
number of months which the plant is not operating (or is operating
while incurring losses in the case of historical data) is much lower in
this case as compared to values obtained using the bootstrapping
techniques.

It is also determined that placing restrictions on the range of
acceptable corn and gasoline prices, especially in the bootstrapping
technique, causes the average option value to become more reason-
able. Mean reverting corn and gasoline prices would imply a similar
effect to this truncation of extreme prices. The bootstrapping data
relies heavily on the historical data, and since it is uncertain how well
past priceswill represent future prices, it is also uncertain how reliable
the bootstrapping approach is. Thus, we modify this technique to
incorporate our prediction of future markets being significantly
correlated. It is shown that, if the correlation assumption is correct,
the value of an ethanol plant monotonically decreases, the largest
decrease occurring when the price moves are highly correlated.
Similarly, the number of months the plant is down increases
substantially with increasing correlation, indicating that the optimal
production schedule heavily depends on the future correlation.

These results can potentially impact the decisions of current plant
developers a great deal. In light of these findings, we note that that the
subsidy value and the running cost (per gallon of ethanol produced) is
assumed constant and fixed. Thus, to ensure that plant owners do not
see a decrease in value of their existing and future facilities, per gallon
subsidies will have to increase. Moreover, plant owners may be forced
to findmore cost efficientways to run their plants. The latter is already
being done at a small number of plants in the U.S, as mentioned in
Section 2.
Finally, the investigation could be continued by moving away from
a data driven valuation to numerically solving low dimensional PDEs
with a set of desired assumptions. If the results of both investigations
are in agreement then we can state our conclusions more confidently.
This will be the focus of future work.
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