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Abstract. Mean-reversion is an essential characteristic of some financial time se-
ries including interest rates, commodity prices, and commodity spreads. Commodity
prices, and certain special spreads between them, are often described by the simple
and analytically tractable Vasicek model. However, the Vasicek model is inadequate
to describe all commodity price series. We introduce a new family of one dimensional
stochastic processes built from a mean-reverting random walk on a lattice. We then
obtain some analytical results about its solution including its stationary distribution.
This new mean-reverting process is compared with the Vasicek process and its ad-
vantages are discussed.

Keywords: Mean-reversion, Mean-reverting random walk, Vasicek process, Mean-re-
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1 Introduction

Understanding commodity prices is one of the final frontiers of quantitative
finance. Commodity markets facilitate the risk management of trading in con-
sumption goods such as agricultural commodities (eg. cotton, wheat, soy-
beans), mineral commodities (eg. copper, zinc, lead), and energy commodities
(eg. electricity, oil, and natural gas). The goods are obtained by costly and
difficult work from farms, mines, or oil wells. As such, increased prices tend
to attract more producers to the marketplace, while decreased prices tend to
drive producers from the market place. The resulting supply/demand dynamics
often cause mean reverting behavior in markets for commodity prices.

In a related way, the spreads between commodity prices are often interesting
as well. For example, corn may be converted to ethanol via a chemical reaction
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(See Kirby and Davison [6] for more detail). Natural gas may be converted to
electrical power by running a gas turbine. The resulting spreads have names:
the spread between the corn and the ethanol price is called the crush spread
while the spread between the gas and the electricity price is called the spark
spread. Because plants can be run at a profit but idled at a loss, the time series
describing these spread processes are also often mean reverting.

A simple continuous time model for prices is known as the Ornstein-Uhlenbeck
process. Vasicek adapted this process to the study of interest rates 1997 [9].
The model has the form:

dXt = κ (µ − Xt) dt+ σ dWt, (1)

and describes the evolution of a one dimensional rate (or price) over time. This
model is simple and analytically tractable, but is not appropriate to model all
time series. In this paper we propose another model for a one dimensional
mean reverting stochastic process. Our model is built up from a random walk
in which a price can take on values on a spatial lattice related to the integers
and makes time steps on a time lattice indexed by the natural numbers. It is
interesting to connect price processes to random walks as they can provide nice
intuition.

A random walk (RW) is a mathematical mechanism to model a path based
on a succession of random steps. Random walks are deployed in many sciences
such as finance, physics, economics, and computer science to capture behaviors
of various processes [10]. A random walk can be applied to trace the behavior
of various paths including the evolution of stock prices, the financial status of
a gambler, a drunkard walking, and a molecule traveling in liquid [8]. Ran-
dom walks have various forms and are often considered as Markov chains [1].
Random walks can occur in one, two, or many dimensions. Moreover, random
walks may have different time dynamics. For example, simple discrete time
walks are indexed by the natural numbers while some sophisticated walks are
assumed to take steps at random times [5].

Here, we construct a walk that is mean-reverting. In this mean-reverting
random walk (MRW), we define the probabilities of taking each step either
forward or backward to depend on the current location of the walker. When
the walker diverges from the mean, by changing the probabilities of traveling
forward and backward, the walker will tend to revert back to the mean, which
means that the restoring force will be stronger as the walker deviates further
away from the mean. This paper is organized as follows:
In Section 2, we define our novel mean-reverting random walk. In Section 3,
we derive the scaling limit of this mean-reverting RW and find its stochastic
process. In Section 4 and 5, we develop analytical results about the continuous
time problem. The new mean-reverting process is compared to the Vasicek
process [9] and its advantages are discussed in Section 6.
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2 Mean-reverting Random Walk:

To begin, consider a random walk defined on an integer lattice. At time steps
indexed by the natural numbers the walker moves either a step to the right
(moving a distance of +1) or a step to the left (moving a distance of -1). We
define the position of the walker immediately after the kth time step by Sk.
We assume that the walker begins at the origin; in other words, S0 = 0.

Now, let Pi denote the probability of moving right (Si+1−Si = 1) at the ith

step. We make this probability depend on the location of the walker as follows:

Pi(right) =


1

2 + aSi−1
, if Si−1 ≥ 0

1 − 1

2 − aSi−1
, elsewhere

=


1

2
− aSi−1

2(2 + aSi−1)
, if Si−1 ≥ 0,

1

2
− aSi−1

2(2 − aSi−1)
, elsewhere,

(2)
where
Si−1 ∈ Z is the current location,
a ≥ 0 is the mean-reversion speed.

As Si−1 increases the probability of going right decreases and vice versa. When
Si−1 approaches infinity, Pi approaches zero. As a decreases, positive Pi de-
creases or negative Pi increases with lower speed. The dynamics described by
equation 2 approaches a simple random walk as a approaches to zero. Denote
by n the number of steps taken: each step is either +1 or −1 [3]. Then the num-
ber of possible different paths that can be traveled will be 2n. The number of
walks that satisfy Sn = k where k > 0 equal to the number of ways of choosing
(n+k)/2 elements from an n element set (for this to be non-zero, it is necessary
that n+k be an even number),

(
n

(n+k)/2

)
. Note that for simple random walk the

P (Sn = k) is equal to 2−n
(

n
(n+k)/2

)
. Here, in this new setting, the probability

changes according to the location; as a result, each path to reach k from the
origin in n walks has its own probability and may be different from another
path with the same endpoints. One evident (but somewhat impractical) way
to calculate this probability is to calculate the probability for every possible
path and sum them up to determine the P (Sn = k). The following Lemma
proves the symmetry of this walk process.

Lemma 21 The mean-reverting random walk generated by the transition prob-
ability function 2 is symmetric:

We need to show that P (Sn = k) = P (Sn = −k) where k > 0. To show
this, it suffices to prove that, for any path R = {0 → k1 → k2 · · · → kn−1 =
k−1→ k} that reaches k starting from the origin, there exists a corresponding
path, R− = {0→ −k1 → −k2 · · · → kn−1 = −k+1→ −k} to reach −k starting
from the origin with identical probability. To build path R− from path R, we
start from the origin and, at each step of path R, we take a step for R− in the
opposite direction. By continuing this method at any given stage of building the
paths, the locations in the paths have identical distances but opposite direction
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from the origin. Clearly, based on the definition of the transition probability
function 2, the probabilities of path R and R− are equal.

3 Mathematical Derivation of Continuous-time Form

We attempt to derive the probability of being in location k after taking n
steps, P (k , n). We obtain the difference equation to calculate P (k , n) for
k ∈ {−n,−n+ 2, · · · , n− 2, n} as follows:

P (k , n) =



(
1

2
+

a(k + 1)

2(2 + a(k + 1))

)
P (k + 1 , n− 1) +(

1

2
− a(k − 1)

2(2 + a(k − 1))

)
P (k − 1 , n− 1), if k ≥ 1,(

1 + a

2 + a

)
P (1 , n− 1) +(

1 + a

2 + a

)
P (−1 , n− 1), if k = 0,(

1

2
+

a(k + 1)

2(2 − a(k + 1))

)
P (k + 1 , n− 1) +(

1

2
− a(k − 1)

2(2 − a(k − 1))

)
P (k − 1 , n− 1), if k ≤ −1,

(3)

where {
P (0 , 0) = 1,

P (k , 0) = 0 for k 6= 0.

One way to understand the dynamics described by equation 3 is to transform
it to continuous form and work to understand the corresponding partial differ-
ential equation (PDE) using powerful tools of mathematical analysis. To do
so, we define step size as ∆x taking each ∆t time. But before we proceed, we
must modify the probabilities of moving right or left in equation 2 such that
to be applicable in continuous form as follows:

P (right) =


1

2
− ax

2(2 + ax)

∆t

∆x
, if x ≥ 0,

1

2
− ax

2(2 − ax)

∆t

∆x
, elsewhere,

(4)

Note that at given arbitrary location x, the probability of moving right,
Pr = 1

2 −
ax

2(2+ a|x| ) and the probability of moving left, Pl = 1
2 + ax

2(2+ a|x| )
lead to an average drift of Pr − Pl = −ax

2+ a|x| space steps per time step. In

other words, this leads to an average speed of
{
−ax

2+ a|x|
∆x
∆t

}
. That is all fine as
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long as we keep the time and space steps the same. But it leads to difficulties
when we refine the grid by taking the limit as ∆x → 0 and ∆t → 0. We
observe that we want to make the mean speed the same no matter what time
step we pick. To get that we write Pr = 1

2 −
ax∆t

2∆x(2+ a|x| ) and similarly for

Pl = 1
2 + ax∆t

2∆x(2+ a|x| ) . This will give us a net speed of −ax∆t
∆x(2+ a|x|)

∆x
∆t = −ax

2+ a|x| ,

independent of the discretization. In the original integer lattice setting, we do
not encounter this point because ∆t = ∆x = 1, so it does not make any differ-
ence. This mean-reverting random walk 4 resembles a single random walk with
drift. The probability that a particle is at location x = k∆x at time t = n∆t,
where k ∈ Z and n ∈ Z+ is:

P (x , t) =



(
1

2
+

a(x + ∆x)

2(2 + a(x + ∆x))

∆t

∆x

)
P (x+∆x , t−∆t) +(

1

2
− a(x − ∆x)

2(2 + a(x − ∆x))

∆t

∆x

)
P (x−∆x , t−∆t), if x > 0,(

1

2
+

a(x + ∆x)

2(2 − a(x + ∆x))

∆t

∆x

)
P (x+∆x , t−∆t) +(

1

2
− a(x − ∆x)

2(2 − a(x − ∆x))

∆t

∆x

)
P (x−∆x , t−∆t), if x < 0,

(5)

Equivalently, equation 5 can be written in the following general form for arbi-
trary x ∈ <:

P (x , t) =

(
1

2
+

a(x + ∆x)

2(2 + a | x + ∆x |)
∆t

∆x

)
P (x+∆x , t−∆t) +(

1

2
− a(x − ∆x)

2(2 + a | x − ∆x |)
∆t

∆x

)
P (x−∆x , t−∆t), (6)

To calculate P (x , t+∆t) for arbitrary (x ∈ <), we deploy equation 6 as follows:

P (x , t+∆t) =

(
1

2
+

a(x + ∆x)

2(2 + a | x + ∆x |)
∆t

∆x

)
P (x+∆x , t) +(

1

2
− a(x − ∆x)

2(2 + a | x − ∆x |)
∆t

∆x

)
P (x−∆x , t) (7)

or equation 7 can be written in the form as follows:

P (x , t+∆t) =
1

2
[P (x+∆x , t) + P (x−∆x , t)] +

∆t

2∆x
[ f(x+∆x , t) − f(x−∆x , t)] , (8)
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where f(x , t) =
(

ax
2+ a|x|

)
P (x , t).

Expand all terms on both side of equation 8 in a Taylor series as follows:

P (x , t+∆t) = P (x, t) +
∂P (x, t)

∂t
∆t +

1

2

∂2P (x, t)

∂t2
∆t2 + O(∆t3),

1

2
[P (x+∆x , t) + P (x−∆x , t)] = P (x, t) +

1

2

∂2P (x, t)

∂x2
∆x2 + O(∆x4),

∆t

2∆x
[ f(x+∆x , t) − f(x−∆x , t)] =

∆t

∆x

{
∂f(x, t)

∂x
∆x + O(∆x3)

}
, (9)

Insert equation 9 into equation 8 and after simplifying and dividing both sides
by ∆t , we have:

∂P

∂t
+

∂2P

2∂t2
∆t + · · · =

∂

∂x

{
ax

2 + a | x |
P

}
+

1

2

∂2

∂x2

{
P
∆x2

∆t

}
+ · · · (10)

For this approach to work, we must take the limit in equation (10) as ∆x→ 0
and as ∆t→ 0 in a particular way such that:

D = lim∆x,∆t→0
∆x2

∆t , some number D.

This is the same continuous limit taken when deriving the diffusion equation
from the simple “drunkards walk” (see Davison 2014 [3]). Therefore, the re-
sulting PDE for arbitrary x ∈ < is:

∂P (x , t)

∂t
= − ∂

∂x

(
−ax

2 + a | x |
P (x , t)

)
+
D

2

∂2P (x , t)

∂x2
. (11)

It is now easy to generalize the PDE in equation 11 by including another
parameter κ > 0, to have another control for mean-reverting speed for arbitrary
x ∈ <, as follows (Later in Section 5, we will show a way to reparameterize this
three parameter system back to two slightly different parameters):

∂P (x , t)

∂t
= − ∂

∂x

(
−κax

2 + a | x |
P (x , t)

)
+
D

2

∂2P (x , t)

∂x2
, (12)

where the boundary conditions and the initial condition are as follows:

lim
x→±∞

P (x , t) = lim
x→±∞

∂P (x , t)

∂x
= 0,

P (x , t = 0) = δ(x), (13)

and δ(x) is the Dirac delta function
(
δ(x) = limε→0

1
ε
√
2π

exp
(
−x2

2ε2

))
.
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3.1 The Fokker Planck Equation

The Fokker Planck equation (FPE) provides a practical methods for stochastic
modeling in wide range of studies including finance, physics, and biology [7].
The FPE describes the probability density function that evolves in time under
a given continuous stochastic process as a partial differential equation. The
general one-dimension FPE for the probability density function, P (x , t) is in
the following generic form:

∂P (x , t)

∂t
= − ∂

∂x
[µ(x, t)P (x , t)] +

1

2

∂2

∂x2
[D(x, t)P (x , t)] , (14)

where µ(x, t) is the drift or force and D(x, t) is the diffusion coefficient.
The stochastic differential equation (SDE) for this P (x , t) takes the form:

dXt = µ(Xt, t) dt+
√
D(Xt, t) dWt. (15)

Therefore, the equivalent SDE for our FPE in equation 12 is given:

dXt =
−κaXt

2 + a | Xt |
dt+ σ dWt, (16)

where κ, a and σ > 0, and dWt is the increment of a standard Brownian motion.
The SDE in equation 16 is clearly mean-reverting since the drift always has the
opposite sign to that of the location of the particle. The drift also increases with
the distance of the particle to the origin, although it reaches a limit. Figure 1
depicts comparison between simulated probability density functions of Xt for
the SDE in equation 15 for given parameters. By examining these graphs, we
see that, as we decrease a, the distribution approaches to normal and as we
increase a, the distribution has higher peak and thinner tails as compared to
a normal density. Since a larger a describes more mean reversion, this is what
we would expect.

4 The Stationary Solution

Useful insight about a stochastic process can be gleaned by determining the
steady state, or stationary, behavior.

Definition 41 Stationary Solution (Distribution): A unique solution to
the FPE 14 or its equivalent SDE 15 is called a stationary distribution and is
denoted by Pst(x) if the limiting distribution of XT as T → +∞ exists:

lim
t→+∞

P (x , t) = Pst(x). (17)

We should note that in FPE 14 or its equivalent SDE 15, if the process has a
stationary solution (distribution), µ(x, t) and D(x, t) are independent of t but
not necessarily vice versa.
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Fig. 1. Comparison between simulated probability density functions of Xt for the
SDE in equation 15 for given parameters. Here, for all these three random walks, we
assumed κ = 1, σ = 1, ∆t = 1/252 , T = 1 and 100, 000 simulated paths.

We attempt to derive a stationary solution for the mean-reverting process
defined in equation 12 (or equivalently in equation 16). Based on the definition
of a stationary solution 17 and from equation 12, we have:

− d

dx

[
−κax

2 + a | x |
Pst(x)

]
+
σ2

2

d2Pst(x)

dx2
= 0. (18)

Or

− d

dx

[
−κax

2 + a | x |
Pst(x) − σ2

2

dPst(x)

dx

]
= 0. (19)

Based on the boundary conditions, we will have zero flux:

−κax
2 + a | x |

Pst(x) − σ2

2

dPst(x)

dx
= c, with c = 0 (by applying BC (13)).(20)

Therefore, we have:

dPst(x)

Pst(x)
=

−2κax

σ2(2 + a | x |)
dx. (21)

Integrating equation 21 yields the solution as follows:

Pst(x) =


c−1 exp

(
4κ ln(2+ax)

a σ2 − 2κx
σ2

)
, if x ≥ 0,

c−1 exp
(

4κ ln(2−ax)
a σ2 + 2κx

σ2

)
, otherwise,

(22)
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where the normalization constant c is obtained from:

c = 2

∫ ∞
0

exp

(
4κ ln(2 + ax)

a σ2
− 2κx

σ2

)
dx,

It turns out that this integral may be written in term of the exponential integral

function, which is defined as En(z) =
∫∞
1

e−zt

tn dt as follows:

c =
22+

4κ
a σ2 e

4κ
a σ2

a
E−4κ

a σ2

(
4κ

aσ2

)
, (23)

Figure 2 shows the stationary solutions (distributions) for the MRW given
in SDE form in equation 15 with stationary solution is in equation 22. By
examining these graphs, we can see that as a increases, the stationary distribu-
tion has a higher peak and thinner tails. The long-run mean and the skewness
of the stationary solution 22 are both zero.

-30 -20 -10 10 20 30

0.02

0.04

0.06

0.08

a=0.1

a=0.05

Fig. 2. The plot depicts the stationary solutions (distributions) for the MRW given
by equation 15 and the derived stationary solution is in equation 22. By looking these
graphs, we can see that as a increases, the stationary distribution has higher peak
and thinner tails. Here, for these two stationary solutions, we assumed κ = 1, σ = 1.

5 Analytical Time Dependent Solution

To simplify and drop one of parameters in SDE 16, let Yt = aXt and apply
Ito’s lemma to derive:

dYt =
−αYt

2 + | Yt |
dt+ σ

′
dWt, (24)
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where α = aκ and σ
′

= aσ. Equivalently, its corresponding PDE is:

∂P (x , t)

∂t
= − ∂

∂x

(
−αx

2 + | x |
P (x , t)

)
+
D

2

∂2P (x , t)

∂x2
, (25)

where D = σ
′
.

5.1 Analytical Solution for a Special Case

We apply the transformation in equation 26 to equation 25 to pave the way for
deriving the time dependent solution as follows:

P (x , t) = exp

(
−2

D

V (x)

2

)
q(x , t), (26)

where the V (x) is obtained using the stationary solution in equation 22 as
follows:

V (x) = α(| x | −2 ln(2+ | x |)). (27)

By applying this transformation, the FPE 25 is converted to a Schrödinger type
equation as follows:

∂q(x , t)

∂t
= −Vs(x)q(x , t) +

D

2

∂2q(x , t)

∂x2
, (28)

where the Vs(x) is:

Vs(x) =

(
αx2

2D
− 1

)
α

(2+ | x |)2
. (29)

The PDE 28 might be solved using a superposition method (when the eigen-
values are discrete) as follows:

q(x , t) =

∞∑
n=0

an(0)e−λntψn(x), (30)

where λn ≥ 0 and ψn(x) are eigenvalues and eigenfunctions respectively, and
can be derived solving the following eigenvalue problem:

D

2

d2ψn(x)

dx2
− Vs(x)ψn(x) = −λnψn(x), (31)

Since by appeal to Lemma 21 ψn(x) must be symmetric, we assume x > 0. Let
z = x+2

a where a > 0 is a constant; therefore, we have:

d2ψn(z)

dz2
−

{(
− α

2

D2
+

2λn
D

)
a2 +

4α2a
D2

z
−

α(4α−2D)
D2

z2

}
ψn(z) = 0, (32)
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Let a = 1√
4α2

D2 −
8λn
D

where 0 ≤ λn < α2

2D , κ = 4α2a
D2 and µ =| 1

2 −
2α
D |.

These assumptions will lead the ordinary differential equation (ODE), 32 to
the following format:

d2ψn(z)

dz2
−
{
−1

4
+
κ

z
+

1
4 − µ

2

z2

}
ψn(z) = 0, (33)

The ODE, 33 is known as Whittaker’s equation and has nontrivial general
solutions as follows:

C1Wκ,µ

(
x+ 2

a

)
+ C2Mκ,µ

(
x+ 2

a

)
, (34)

where x >= 0, and Wκ,µ(z) and Mκ,µ(z) are Whittaker functions.
For arbitrarily x ∈ < , it is easy to show that the general solutions take the
following form:

C1Wκ,µ

(
| x | +2

a

)
+ C2Mκ,µ

(
| x | +2

a

)
, (35)

In this subsection, we attempt to solve mean-reverting SDE 24 analytically
to find the transition density. Unfortunately, it is difficult to explicitly solve
this particular stochastic process. As we saw above for the Whittaker function
approach, the presence of the absolute value unfortunately makes impossible
to obtain the orthogonality relation to go from equation 35 to a series solution
allowing general initial condition to be accommodated. We investigate the
reasons for this in the next section.

5.2 Application of Symmetry Group Methods

Consider the stochastic process of the form as follows:

dXt = f(Xt) dt+ σ dWt, (36)

Craddock and Dooley [2] deploy Lie group symmetries to classify the SDEs
like equation 36. They consider the Fokker Planck equation for the probability
density P (x, t) associated with SDE 36. Certain classes for the function f(x)
allow symmetry to be deployed which transforms P (x, t) = 1 to the density
associated with equation 36. Here, we state their Theorem (without proof) as
follows:

Theorem 51 There exists a point symmetry for the equivalent heat equations
of the SDEs in the form of equation 36 taking P (x, t) = 1 to the fundamental
solution of the heat equation if and only if f(x) fulfills one of the following
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Ricatti equations:

f ′(x) +
1

2
f2(x) =

A

x2
− B

2
,

f ′(x) +
1

2
f2(x) =

x2

8
+
C

x2
,

f ′(x) +
1

2
f2(x) =

C

(x+ 2)2
,

f ′(x) +
1

2
f2(x) =

2

3
Cx,

f ′(x) +
1

2
f2(x) =

Cx2

2
+D, (37)

where A, B, C, andD ∈ < and arbitrary.

Unfortunately, the drift term of this new mean-reverting dynamics 24 does not
satisfy any of the Ricatti equations 37; therefore, we could not find explicit
solution for this SDE.

6 The New Mean-reverting Process versus Vasicek
Process

The Vasicek process was initially introduced by Vasicek [9] to model the evolu-
tion of short interest rates so as to capture one essential characteristic of such
rates, their mean-reversion. Since the Vasicek process is mean-reverting, sim-
ple and analytically tractable, this one-factor model is popular and deployed in
various models such as spread processes, credit markets and convenience yield.
In Vasicek process, the only factor (state variable), Xt is assumed to follow the
stochastic differential equation as follows:

dXt = κ (µ − Xt) dt+ σ dWt, (38)

where κ > 0 is the speed of mean-reversion, µ is the long-run spread mean, σ is
the volatility of the process, and dWt is the increment of a standard Brownian
motion.

Since the long-run mean is not necessarily zero, the dynamics of equation
24 can be generalized as follows:

dXt =
−κ(Xt − µ)

| Xt − µ | +2
dt+ σ dWt, (39)

where µ is the long-run mean.

As discussed above, the new process equation 39 and the Vasicek equation
38 both have the mean-reverting property. We need to compare them to see
which one is more appropriate in financial modeling. In these two stochastic
processes, when the process tends to deviate away from their long-run means,
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their drift functions impose force to revert back to long-run mean quite dif-
ferently. Figure 3 depicts their drift functions. By looking these graphs, we
can see that in the Vasicek model as the process attempts to deviate from
the long-term mean µ, the drift linearly increases the force to revert back the
process to mean µ; however, in the MRW model as the process diverges away
from its long-run mean, up to certain ranges of x, the amount of attraction
to the mean increases in an approximate linear way just as Vasicek. Unlike
Vasicek, however, the restoring force becomes constant in the asymptotic limit.
This suggests that this new mean-reverting process has more chance to stay
away from the long-run mean for a longer time; in other words, it has relatively
heavier tails, which is a typical property of financial processes [4].
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Fig. 3. The plot depicts the drift functions for the new mean-reverting process given
in equation 39 and the Vasicek process given in equation 38. We assumed κ = 1,
µ = 0 for both models.

To compare these two processes, we simulate 10, 000 paths for both pro-
cesses with identical parameters and random values. At each step, we record
the empirical variance for all three processes. The constructed variance paths
are shown in figure 4. The empirical transition densities also are depicted in
figure 5. These figures show that the new mean-reverting dynamics is capable
of capturing heavy tails and kurtosis and has more flexibility to capture the
reality of the spread processes models compares to that of the Vasicek process.

7 Conclusion

In this paper we introduced a new mean-reverting random walk and derived
its SDE limit. Its stationary distribution was derived, but all attempts to
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Fig. 4. Time plots of variance and empirical densities for 10, 000 simulated paths.
Plot shows how empirical variances evolve through the time in these three models.
We assumed κ = 0.4, µ = 0, σ = 1, ∆t = 1

252
, and T = 5 for both models by using

identical random generated numbers.
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Fig. 5. Time plots of empirical transition densities for 10, 000 simulated paths. Plot
shows comparison between empirical densities in these two models after five years.
We assumed κ = 0.4, µ = 0, σ = 1, ∆t = 1

252
, and T = 5 for both models by using

identical random generated numbers.

obtain general solutions for this nonlinear dynamics analytically for transi-
tion density failed. We also generalized this new mean-reverting process to
equip the diffusion to have long-run mean other than zero. We compared this
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one-factor stochastic differential equation to Vasicek process [9] and using sim-
ulation results, we showed that this new mean-reverting one-factor model has
the capability to capture the potential heavy tails of financial processes.
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