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Abstract

Does Noise Create the Size and Value Effects?

Black (1986) and Summers (1986) suggest that there is noise in stock prices in a sense that the price
of a stock can be randomly different from its intrinsic value. Such noise can arise from economic models
(e.g., Grossman and Stiglitz (1980) and De Long, Shleifer, Summers, and and Robert J. Waldmann
(1990) ), market microstructure (e.g., Stambaugh (1983) and Roll (1983)), among other sources.

In this paper, we show that when there is noise in the price of a stock, its expected return conditional
on the price or the price-dividend ratio decreases with the price or the price dividend-ratio. These higher
expected returns associated with lower price or price-dividend ratios are not compensation for risk, but
are generated because a stock with a low price or a price-ratio is more likely to have a negative price
noise thus to be undervalued.

Fama and French (1992) use the matrix of expected returns conditional on size-value deciles as a
demonstration of size and value effects. This matrix can be computed in closed form using our model
and, for plausible parameters, is similar to its empirical counterpart (Table V of Fama and French). In
our model, small and value stocks have slightly higher betas and positive alphas. Our study suggests
that noise creates the size and value effect.



1 Introduction

Many economists would agree that the market price of a stock may temporarily deviates from its fun-

damental value. In fact, Blume and Stambaugh (1983), Roll (193), Black (1986), and Summers (1986),

among many others, suggest that noise may play an important role in financial markets. However, it is

not easy to detect the presence of these temporary deviations, as pointed by Summers (1986), Fama and

French (1988), and Poterba and Summers (1988). At the same time, the cross section of expected returns

predicted by economic theories does not match that observed in the data. In particular, stocks with a low

price1 (market capitalization) and/or price-to-fundamental ratio have higher expected returns, as summa-

rized by the matrix (Fama and French (1992), Table V) of expected return conditional on size and value2

deciles.

In this paper, we demonstrate that noise, a temporary random deviation of stock prices from their

fundamentals, would produce cross-sectional variations in expected returns. We show that the matrix of

expected returns conditional on size and value deciles computed using our model is similar to the matrix

of Fama and French (1992). Therefore, we suggest that price noise creates and manifests itself through the

size and value effect.

Specifically, with a simple and parsimonious model, where the value process is assumed to be a random

walk and the noise is a mean-reverting AR(1) process, we compute explicitly the unconditional expected

return and show that noise introduces expected returns dependence on the dividend yield and idiosyncratic

volatility, in addition to beta. The cross sectional variation in unconditional expected returns is generated

by variations in parameters such as beta, idiosyncratic volatility, dividend-price ratio, and volatility in

noise.

More importantly, we show that the cross-sectional variations in conditional expected returns are

generated by random realization of the price noise without any parameter variation. The matrix of Fama

and French (1992) demonstrates that the expected return, conditional price and price ratio, decreases with

price and price ratio. We compute explicitly the expected return conditional on price and price ratio and we

show that the conditional expected return decreases with price and price ratio. With plausible parameters

for noise, where the conditional volatility of noise is about 6%, the matrix of expected return conditional

on size and value deciles predicted by our model is similar to that of Fama and French (1992).

In our model, the size and value effects have the same source–noise. The intuition is the following. A

stock with a positive noise should have a lower expected return. Although noise is unobservable, they can

be inferred from prices: noise for a stock is more likely positive if its price is high. The same intuition

applies for price-book as well as a variety of other price-fundamental ratios.
1Throughout this paper, we assume that firms have only one stock share outstanding. Therefore, we can use ”price”,

market capitalization, and market equity (as in Fama and French (1992)) interchangeably.
2In this paper, we use value to mean the fundamental or rational value of a stock and use it in “value effects”. Hopefully,

which usage of the term will be clear from context.
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Our model predicts that small and value stocks are on average riskier, in the sense that both systematic

and idiosyncratic risks are higher. The average beta3 and the average idiosyncratic volatility with noise

are a few percents higher than the averages without noise, given the parameters calibrated to US market

data. However, the higher expected returns in small and value stocks cannot be accounted for by slightly

higher (systematic) risks. They are driven mostly by pricing noise in the stock market. Our result suggest

that value stocks are, indeed, more likely to be undervalued.

We should remark that it is possible that higher expected returns of small and value may not persist

over time. On the other hand, they may persist over time due to limit of arbitrage, associated with either

risks of small and value stocks or transactional costs.

We should point out that both the noise and the value process are exogenously given in our paper.

The value process, which is a Gaussian random walk in the paper, is used in many academic studies and

can be generated in an equilibrium model. This specification is useful for closed-form solution for the size

and value spread. In general, the value process from asset pricing theories may not have the exact form

we assumed, however the intuition still applies. The noise, which describes deviations from equilibrium,

is exogenously specified as a mean reverting process. Our specification of the noise is quite intuitive and

plausible and is used extensively in literature (Summers (1986), Poterba and Summers (1988), Fama and

French (1988), and Campbell and Kyle (1993), to name a few). To endogenize the noise process, a model

of off-equilibrium is needed, which is beyond the scope of this paper.

Our paper is organized as follows. In Section 2, we review the related literature briefly. In Section

3, we formally introduce the model of noise and specify the parameters of the model. In Section 4, we

explore the implication on unconditional expected stock returns in the presence of pricing noise. We show

that stocks with greater noise earn higher returns, on average. In Section 5, we give the intuition for the

expected returns conditional price and price ratios. In Sections 6 and 7, we show that the noise produces

the size and value effects. In section 8, we compute the matrix of expected return conditional on size and

value simultaneously. We compute the matrix of expected returns, beta, and alpha conditional on size and

value deciles. In Section 9, we compute expected returns conditional on either on return or on the full

history of prices. Finally, Section 10 concludes.

2 Literature Review

Noise is used in rational finance models. Blume and Stambaugh (1983) and Roll (1983, 1984) argue that

observed price is either the bid or the ask, not the value, thus price is different from value by a random

noise term.4 In term structure models, where the number of shocks is usually smaller than the number of
3Lakonishok, Shleifer, and Vishny (1994) found that the beta of the value stocks is about 0.1 higher than the beta of the

growth stocks.
4There are subsequently many studies in market microstructure literature on noise in prices. See for example, Daniel,

Hirshleifer, and Subrahmanyam (2001) and Chordia, Roll, and Subrahmanyam (2005). However, noise considered in this
paper is less likely due to market microstructure.
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independent securities, it is assumed that the market prices for bonds are different from the model derived

fair values by a noise. Theoretically, in, for example, Grossman and Stiglitz (1980) and De Long, Shleifer,

Summers, and and Robert J. Waldmann (1990), price noise is generated by an exogenously-specified

demand of noise trader.

The origin of mispricing could be due to slowness to incorporate information. Event studies suggest

that it takes about 2 weeks for information on mergers to be impounded in the price.

Price can be different from value if investors under- or over-react. With random realization of positive

or negative news, over- or under- reaction presumably should generate noise–random deviation from value.

Note that over- or under-reaction is different from optimism or pessimism, which we expect to generate

biased deviations from the value. In behavioral finance literature, pricing error can arise from investor

overreaction, as suggested by Shiller (1981), DeBondt and Thaler (1985, 1987), Lakonishok, Vishny, and

Shleifer (1994).

In Campbell and Kyle (1993) value is determined endogenously, but the price is different from value by

a mean-reverting noise that is exogenously specified. They show that this model can explain the volatility

and predictability of the US stock returns.

Black (1986) proposes that financial markets are noisy (that prices are different from fair values) due

to trading by investors without information. He believes that “noise causes the market to be somewhat

inefficient but yet prevent people from taking advantage of inefficiencies.”

Summers (1986) argues that prices are noisy, but the power of the standard econometric tests are

simply too weak to either detect noise or reject the Efficient Market Hypothesis. Summers argues that

the noise is difficult to discern using variance ratios and autocorrelations. Our results suggest that noise

manifests itself through expected returns in size and value effects.

Fama and French (1988) and Poterba and Summers (1988) study mean-reversion in prices and point

out that one of the possible explanation for mean reversion is the deviation of price from the efficient

market value. They infer the existence and properties of noise from the autocorrelation of returns.

The size and value effects have spurred spirited debates since Banz (1981) and Reinganum (1981) docu-

mented that smaller capitalization stocks tend to outperform on a risk-adjusted basis, and Stattman (1980)

and Rosenberg, Reid and Lanstein (1985) documented that high book-market stocks also outperform. Sim-

ilarly, other ratios such as earnings-price, documented by Basu (1977) and dividend yield, documented by

Razeff (1984), Shiller (1984), Blume (1980) and Keim (1985), also predict future performance.

There are many explanations for the observed size and value effects. Fama and French (1992) show

that size and value, along with market beta, capture well the cross-sectional variation in stock returns and

subsume the explanatory powers of other financial variables. They propose that the size and value premia

are compensation for risk. Lakonishok, Shleifer and Vishny (1994) argue that the size and value premia are

due to investor overreaction rather than to risk. Gomes, Kogan, and Zhang (2003) Zhang (2006) argues
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that the value effect can be explained in a production economy. Yogo (2006) proposes that the size and

value effects can be explained by investor preferences that are non-separable in nondurable and durable

consumption.

Blume and Stambaugh (1983) suggest the random bounce between bid and ask prices as one source

of noise and they use it to explain the size effect. They show that the unconditional expected returns

increases with the variance of the noise. However, they did not compute the expected returns conditional

on the price. Furthermore, the bid-ask bounce is useful for explaining effects in daily returns but is less

likely the cause for effects that occur at quarterly or annual horizons and the size effect is observed in these

horizons.

Berk (1995, 1997) suggests that noise as a source of size and value effects. He points out that there is a

one-to-one correspondence between price and expected return thus between price and beta. If the expected

return is correctly specified, after controlling for beta, there is no price dependence in expected returns.

However, if the expected return is misspecified, the price dependence of the missing beta shows up as

price dependence of the expected return. In Berk (1995, 1997), small stocks have higher expected returns

because they have higher systematic risk. Whereas in our paper, the higher expected return of value stock

is mainly due to the fact that they are likely to be undervalued.5 An empirical evidence that distinguishes

Berk model from our model would be whether small and value stocks are exposed to significantly higher

systematic risks.

Arnott, Hsu, and Moore (2005) and Arnott (2005a, b) also propose that noise as a likely source for size

and value effects. Hsu (2006) shows that mispricing premium may exist because there are investors with

liquidity needs. Arnott and Hsu (2006) show that mean-reverting mispricing can lead to small cap and

value stock outperformance; they predict that size and value might be two manifestations of one effect,

pricing noise.

Brennan and Wang (2006) also study, empirically as well as theoretically, the effect of mispricing on

unconditional expected returns for a larger class of models, where mispricings can be due to slowness in

adjustment of price and systematic mispricing in addition to random noise. They did not study conditional

expected returns which are our focus.

3 Noise

In this section, we discuss key assumptions and technical assumptions of the paper.

The following is the key assumption of the paper.

Assumption 1 Every stock has a value Vt, which is determined by economic theory. The price Pt of a
5The following example illustrate the difference between our model and that of the Berk. In an economy where the stock

returns are identically-distributed but are correlated through common factors, the expected return will be independent of the
prices under Berk (1995, 1997) while stocks with a lower price are more likely to have a higher expected return under our
model.
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stock deviates from its value Vt by a noise ∆t. Specifically,

Pt = Vt
e∆t

E[e∆t ]
, (1)

where ∆t is independent of Vs for all t and s and E[e∆t ] is the unconditional expectation of e∆t. The
dividend Dt of the stock is also independent of ∆s, for all t and s.

In assumption 1, the theory that determines the value Vt is unspecified and can be consumption-based

asset pricing models, CAPM, or APT, just to name a few. The value Vt is the price if there were no noise

and has all the “nice” properties, for example, the expected return computed using Vt is determined by

risk and thus the cross section of expected returns computed using Vt is determined by beta only if the

asset pricing model is APT. For our purpose, it is not necessary to define how the market arrives at this

value Vt. However, it may be convenient to think of the discounted cashflow valuation equation where

Vt = Et[
∑∞

s=t e−µ(s−t)Ds], where µ is the discount rate and Ds is the dividend at time s.

Assumption 1 implies that

E[Pt|Vt] = Vt. (2)

That is, the price for a stock is a noisy proxy for its value, which we assume is unobservable, and the price

is, on average, right. The assumption on dividend Dt is necessary for drawing conclusion on returns since

dividend Dt+1 is part of the cashflow for t + 1, in addition to the price Pt+1. Without loss of generality,

we will assume that E[∆t] = 0.

Black (1986) also argues that there might be a difference between the price and the fair value of a

stock but he does not present a form analysis. Summers (1986) assumes an additive form, Pt = Vt +

∆t. Summers asserts, “[This assumption of pricing noise] clearly captures Keynes’s notion that markets

are sometimes driven by animal spirits unrelated to economic activities. It, also, is consistent with the

experimental evidence of Tversky and Kahneman that subjects overreact to new information in making

probabilistic judgements. The formulation considered here [also] captures Robert Shiller’s suggestion that

financial markets display excess volatility and overreact to new information.” We remark that the noise

in Assumption 1 is specified in multiplicative form, which is used in Blume and Stambaugh (1983) and

Fama and French (1988) (see also Hsu (2006)). The additive form of Summers (1986) implies that the

noise becomes negligible over time as Vt grows, if ∆t is stationary as Summers assumes. Aboody, Hughes,

and Liu (2002) also assume an additive form. Campbell and Kyle (1993) recognize this problem and use

an additive form with de-trended dividends. Such a problem does not arise from the multiplicative form.

Many of the qualitative results of the paper follows from this assumption. We will make more technical

assumptions for quantitative results.

Assumption 2 The noise satisfies,

∆t+1 = ρ∆t + σε∆ε∆t+1, (3)

where εt are independent standard normals.
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When ρ < 1, ∆t is mean-reverting and stationary. This implies that a noise ∆t+1 at time t + 1, on

average, will lead to smaller noise ∆t at time t. The mean reversion of ∆t towards zero captures the

intuition that information is slowly impounded into prices. When ρ = 0, the noise is independent and

identically distributed (IID). If ρ = 1, the noise ∆t+1 will be equal to ∆t on average. In this case, the noise

is infinitely persistent and price levels do not predict returns E[Rt+1|P0...Pt] = E[Rt+1].

Whether noise ∆t is mean reverting or not is an empirical question. To avoid cubersome notations,

the rest of the paper will assume that ρ < 1. Presumably, the market sets price Pt to be its best estimate

of Vt, therefore Pt should revert towards value Vt, as new information becomes known. However, most of

the derivation in the paper goes through with minor changes if ρ = 1.

We assume that σε∆ is a constant. This assumption may be a little restrictive since σε∆ could be

state dependent. For example, noise during economic expansions may have a different volatility from noise

during recessions.

Similar specifications of the noise follow from Blume and Stambaugh (1983), Summers (1986), Fama

and French (1988), Aboody, Hughes, and Liu (2002), Arnott and Hsu (2006), Hsu (2006), and Brennan

and Wang (2006).

For ease of exposition, we denote the logarithm of Vt by vt and logarithm of Pt by pt,

Vt = evt ; Pt = ept . (4)

Equation (1) can then be written as

pt = vt + ∆t − ln(E[e∆t ]). (5)

We call Vt+1+Dt+1

Vt
the value return Rv

t+1, which is dictated by some asset pricing model. We call Pt+1+Dt+1

Pt

the return Rt+1. We will use dt = ln Dt to denote the logarithm of the time t dividend Dt. We make the

following assumption on the value and the value-dividend ratio.

Assumption 3 The value vt is a random walk,

vt+1 = µ + vt + σrεrt+1. (6)

The value-dividend ratio satisfies

vt+1 − dt+1 = (1− ρx)x̄v + ρx(vt − dt) + σεxεxt+1. (7)

Furthermore, vt is independent of vs − ds for all t and s.

Assumption 2 implies that, if there is no dividend, µ is the mean of the log-value-return (vt+1 − vt) and

σr is the volatility. According to Assumption 3, the value-to-dividend ratio vt − dt has a mean of x̄v and

conditional volatility of σεx , and is mean reverting with coefficient ρx. Equations (6) and (7) in Assumption

3 are used in the literature on predictive regressions, see for example, Stambaugh (1999) and Valkanov and

Torous (2005).6

6Note that there is no price noise in these studies, thus the value-dividend ratio is the price-dividend ratio.
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Table 1: Summary of Parameters

µ σr σε∆ ρ x̄v ρx σεx

3% 30% 6% 0.5 4 0.9 10%

The calibration of these parameters are described in Section 3.

Asset pricing models typically determine the value-to-dividend ratio from preferences of the investors.

For example, in the consumption-based asset pricing model where the representative agent has constant

relative risk aversion coefficient and the dividend growth is independent and identically distributed (IID)

over time, the value-to-dividend ratio is constant. However, in most models, the value-to-dividend ratio is

stochastic and stationary. The above specification is an approximation and a simplification to a stationary

value-to-dividend ratio. With the value process and value-dividend ratio process specified as above, the

dividend growth process is implicitly determined. See Ang and Liu (2006) for a discussion on related issues.

Assumptions 2 and 3 are needed to obtain closed-form inference on noise ∆t from prices and price

ratios. With other non-gaussian specifications, it is not easy to compute in closed form the inference about

the noise, but the same intuition applies. The independence assumption between vt and vt− dt is made to

simplify the expression. Closed-form inference still obtains if the correlation is a non-zero constant.

When there are multiple stocks, the shocks ε∆t+1, εrt+1, and εxt+1 could all have systematic components

as well as idiosyncratic components. As we will show later, our results in later sections still apply with

a reinterpretation of parameters when the correlation between stocks are introduced through common

systematic factors.

We calibrate the above specification as follows, with all the parameters summarized in Table 1. The

parameter µ only affects the overall magnitude of the expected return. We take µ to be 10%. Since the

mean and volatility of the price-dividend ratio are small, the volatility of the stock return is largely due to

price fluctuations. Note that, from Assumptions 1, 2, and 3,

pt+1 − pt = vt+1 − vt + et+1 − et = µ + (1− ρ)∆t + σrεrt+1 + σε∆ε∆t+1,

thus, the variance of the return is the sum of the variance σ2
r of the value return vt+1−vt and the conditional

variance σ2
ε∆

of the noise ∆t+1. We will take σr = 15% and σε∆ = σr/3 ≈ 5%. The ratio of σr/σε∆ = 3

gives a ratio between variance of the noise and total variance of the stock return of 10%. French and Roll

(1986) suggest that “between 4% and 12% of the daily return variances is caused by noise.” Fama and

French (1988) estimate that predictable variation due to mean reversion is about 35 percent of 3-5 year

variances and they suggest, following Summers (1986), that the mean-reversion may be due to market

inefficiency. In his calibration exercises, Summers (1986) uses the values of σ2
r that is of the same order of

magnitude as σ2
ε∆

.

The value of ρ can be inferred from mean-reversion in prices, assuming the mean reversion is due to

noise. Fama and French (1988) shows that there are significant mean-reversion in prices for holding-period
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horizons larger than 1 year. Summers (1986) uses values of ρ between 0.75 to 0.995 and Poterba and

Summers (1988) use values between 0 and 0.70. We will consider a range of ρ, as Summers and Poterba

and Summers. However, the value and size effect is not overly sensitive to ρ , as long as 0 < ρ < 1.

The calibration of parameters for value-dividend ratio are based on the studies of Stambaugh (1999)

and Valkanov and Torous (2005) on the predictive regression of the market portfolio. They found that the

mean dividend ratio is about 3%, the AR(1) coefficient is above 0.9 and the conditional volatility is less

than 1%. Because noise largely averages out in the market portfolio,7 we expected the mean and AR(1)

coefficient for the value-ratio process should be in the neighborhood of their estimates for for the market,

thus we set x̄v = 4 and ρx = 0.9. We will set σεx = 10%.

4 Unconditional Expected Returns

In this section, we study the implications of noise on unconditional expected returns. We show that noise

can generate cross-sectional variations in unconditional expected stock returns.

From equation (1) and by the stationarity of ∆t, we have

Pt+1

Pt
=

Vt+1

Vt

E
[
e∆t

]

E [e∆t+1 ]
e∆t+1−∆t =

Vt+1

Vt
e∆t+1−∆t . (8)

Let Dt denote the dividend of the stock at time t. We assume that it is independent of the noise ∆t. Then

Dt+1

Pt
=

Dt+1

Vt
E

[
e∆t

]
e−∆t . (9)

The unconditional expected return is,

E
[
Pt+1 + Dt+1

Pt

]
= E

[
Vt+1

Vt

]
E

[
e∆t+1−∆t

]
+

Dt+1

Vt
E

[
e∆t

]
e−∆t . (10)

Proposition 1 If Assumption 1 holds, the expected return is higher than the expected value return.

(Proof) By stationarity,

E [∆t+1] = E [∆t] , (11)

therefore,

E [∆t+1 −∆t] = 0. (12)

By Jensen’s inequality,

E
[
e∆t+1−∆t

] ≥ eE[∆t+1−∆t] = 1. (13)

Equation (10) then gives,

E
[
Pt+1

Pt

]
= E

[
Vt+1

Vt

]
E

[
e∆t+1−∆t

] ≥ E
[
Vt+1

Vt

]
. (14)

7Campbell and Kyle (1993) study price noise of the market portfolio. Their paper suggest that there are systematic
components in the price noise of individual stocks.
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Furthermore,

E
[
Dt+1

Pt

]
= E

[
Dt+1E[e∆t ]

Vte∆t

]
= E

[
Dt+1

Vt

]
E[e∆t ]E

[
1

e∆t

]
≥ E

[
Dt+1

Vt

]
. (15)

Combining inequalities in (14) and (15), we conclude that

E
[
Pt+1 + Dt+1

Pt

]
≥ E

[
Vt+1 + Dt+1

Vt

]
. (16)

Blume and Stambaugh (1983) suggest that bid-ask spreads lead to a noise of the form ∆t = 1+ ε∆t, where

ε∆t is mean zero and independent across the time. They show that the noise increases the unconditional

expected return for ρ = 0 and D = 0 case of the above Proposition.

Proposition 1 only requires that the noise is independent of the value and the dividend. With the

additional assumption that the noise is an AR(1) process, we can established an exact relationship between

the unconditional expected return and unconditional expected value return.

Proposition 2 If Assumptions 1 and 2 hold, the expected return is given by

E
[
Pt+1 + Dt+1

Pt

]
= E

[
Vt+1

Vt

]
e

σ2
ε∆

1+ρ + E
[
Dt+1

Vt

]
e

σ2
ε∆

1−ρ2 , (17)

which is higher than the expected value return E
[

Vt+1

Vt

]
+ E

[
Dt+1

Vt

]
. Furthermore, if Assumption 3 also

holds, then

E
[
Pt+1 + Dt+1

Pt

]
= eµ+ 1

2
σ2

r

(
e

σ2
ε∆

1+ρ + e
−x̄v+

σ2
εx

2(1−ρ2
x)

+
σ2

ε∆
1−ρ2

)
. (18)

(Proof) When equation (3) holds, we have

E[e∆t+1−∆t ] = E[e(1−ρ)∆t ]E[eσε∆
εt+1 ] = e

(1−ρ)2σ2
ε∆

2(1−ρ2) e
σ2

ε∆
2 = e

σ2
ε∆

1+ρ ;

E[e∆t ]E
[

1
e∆t

]
= e

σ2
ε∆

1−ρ2 ,

noting
σ2

ε∆
1−ρ2 is the unconditional variance of ∆t. Since e

σ2
ε∆

1+ρ ≥ 1 and e
σ2

ε∆
1−ρ2 ≥ 1, we conclude that

E
[

Pt+1+Dt+1

Pt

]
≥ E

[
Vt+1+Dt+1

Vt

]
. When Assumption 3 holds, equation (18) is proved by noting that

E
[
Vt+1

Vt

]
= eµ+ 1

2
σ2

r ;

E
[
Dt+1

Vt

]
= E

[
Vt+1

Vt

]
E

[
Dt+1

Vt+1

]
= eµ+ 1

2
σ2

r e
−x̄v+

σ2
εx

2(1−ρ2
x) .

The unconditional expected return in the absence of noise is

eµ+ 1
2
σ2

r

(
1 + e

−x̄v+
σ2

εx
2(1−ρ2

x)

)
,

which should be determined by asset pricing theories thus should depend only on beta under CAPM or

APT. Proposition 1 and 2 hold without any specifications of asset pricing theory and thus are valid quite

generally.
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Cross-section variations in unconditional expected returns can be generated by noise, according to

Proposition 2. With noise, the unconditional expected return given in equation (18) depends also on

idiosyncratic volatility, the volatility σε∆ and AR(1) coefficient ρ of noise ∆t and the parameters (x̄v, σx, ρx)

of the price-dividend ratio, in addition to beta. That is, given two stocks with either different noise

variance or mean price-dividend ratio, the unconditional expected returns can be different, even if they

have the same (systematic) risk. In other words, cross-sectional variations can be generated by variations

in these parameters. It is not very satisfactory that the cross-sectional variation has to be exogenously

specified (through specification of parameter variations). On the other hand, it is not true that one can

always generate cross-sectional variations in expected returns with parameter variations. For example,

in standard asset pricing models such as CAPM and APT, variations in idiosyncratic volatilities do not

generate cross-sectional variations in expected returns.

From the above Proposition, the effect of noise on unconditional expected returns is at the order of

σ2
ε∆

. With a value of 6% for σ2
ε∆

, given in Table 1, the change in unconditional expected returns is about

36 basis point. However, if σ2
ε∆

= 10%, which is not unreasonable for some stocks, the change will be 1%.

The difference between the unconditional expected return and unconditional expected value return is

due to Jensen’s inequality, which is driven by the variance of the random variable. Therefore it is only

natural that the difference between the expected return and value return increases with σ2
ε∆

for ρ < 1.

Proposition 1 and 2 are more generalized versions of the result presented in Hsu (2006). Brennan and

Wang (2006) also derive similar results.

Blume and Stambaugh (1983) compute the unconditional expected return for ρ = 0 and D = 0 case of

Proposition 2. They show that the size effect observed in daily returns can be explained by the noise they

suggested.

Berk (1997) computes unconditional cross-section correlation between price and the return. As in our

model, the cross sectional variation in unconditional expected returns in Berk (1997) needs to be generated

from variations in parameters.

One implication of our paper is that, ceteris paribus, a less transparent stock (one that is more likely

to be mispriced and therefore has a higher σε∆) will have a higher unconditional expected return. This is

consistent with recent empirical findings where the cost of capital for a firm, controlling for beta, is higher

when the firm is less transparent. Hughes, Liu, and Liu (2006) argue that these empirical findings may not

be explained by risk. The propositions suggest that noise could provide a potential explanation for this

empirical finding.

Shiller (1981) points out that the return variance for a stock, in a world with IID dividend growth

and CRRA representative preference, should be equal to the variance of its dividend growth. However,

empirically, the variance in stock dividend growth is lower than the variance in return, giving rise to

Shiller’s excess-volatility puzzle. In our model, the variance of the return is the sum of the variance of the
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value return and the variance of the noise. This potentially offers a perhaps indelicate explanation for the

excess-volatility puzzle, as suggested in Campbell and Kyle (1993).

In later sections, the conditional expected return will be compared with equation (18).

5 The Intuition for Conditional Expected Returns

In this section, we present the intuition for why expected returns depend on price or price ratios when

there is noise in price. Let us first assume that the noise ∆t is observed. In this section and this section

only, for the notational simplicity, we will use the additive form of noise:

Pt = Vt + ∆t.

It then follows that

Pt+1 + Dt+1

Pt
=

Vt+1 + Dt+1

Vt + ∆t
+

Vt+1 + ∆t+1 − Vt+1

Vt + ∆t

=
Vt

Vt + ∆t

Vt+1 + Dt+1

Vt
+

∆t+1

Vt + ∆t
. (19)

The factor Vt
Vt+∆t

is the relative mispricing at time t, Vt+1+Dt+1

Vt
+ ∆t+1

Vt+∆t
is the value return, which is the

return without noise, and ∆t+1

Vt+∆t
is due to noise at time t+1. To be specific, we will assume that the value

return satisfies the following relation

Vt+1 + Dt+1

Vt
= Rf + βλ + βFt+1 + σrεrt+1,

which is true under either CAPM or APT. The gross risk-free rate is Rf , the factor is Ft+1, the factor risk

premium is λ, idiosyncratic risk is given by εrt+1, and the idiosyncratic volatility is σr. We can write

Vt

Vt + ∆t

Vt+1 + Dt+1

Vt
= − ∆t

Vt + ∆t
Rf + Rf +

Vt

Vt + ∆t
(βλ + βFt+1 + σrεrt+1).

This equation implies that the beta and volatility of the return is scaled by a factor of Vt
Vt+∆t

. The risk

premium is also scaled by the same factor. Thus, Rf + Vt
Vt+∆t

(βλ + βFt+1 + σrεrt+1) is a fair return with

theoretically correct compensation. The term − ∆t
Vt+∆t

Rf represents the extra return spread that is not

associated with risk but is associated with mispricing generated by noise. When ∆t < 0, the stock is

under-valued and the spread is positive. Note that in this case, both systematic risk and idiosyncratic risk

are higher.

Furthermore,

∆t+1

Vt + ∆t
=

ρ∆t + σε∆ε∆t+1

Vt + ∆t
.

When the AR(1) coefficient ρ of the noise is not zero, the pricing error produce by noise ∆t at time t will

be persistent and lead to an average pricing error of ρ∆t+1 at time t + 1, thus leading to an extra term

11



ρ∆t

Vt+∆t
in expected return. Putting all terms together, the return is

Pt+1 + Dt+1

Pt
= − Rf − ρ

Vt + ∆t
∆t + Rf +

Vt

Vt + ∆t
(βλ + βF + σrεrt+1 + σε∆ε∆t+1)

= −Rf − ρ

Pt
∆t + Rf +

Pt −∆t

Pt
(βλ + βF + σrεrt+1 + σε∆ε∆t+1).

Accordingly, suppose that there is a negative pricing error at time t, ∆t < 0, the idiosyncratic risk will be

higher because both Pt−∆t
Pt

σr > σr and there is an extra risk associated with noise at time t + 1, the beta

thus the risk premium associated with the factor risk will be higher. In addition, there is an alpha term,

−Rf−ρ
Pt

∆t, which is due to the fact that the stock is under-valued.

In reality, we do not observed the noise ∆t. However, we can still infer ∆t from the price Pt or price

ratios. The lower the price or the price ratios, the more likely ∆t is negative and the stock is under-valued.

Under the Gaussian setting specified in Assumptions 1-3, the inference can be precisely computed. In the

rest of the paper, we will compute the average ∆t given Pt or price ratios and thus the expected return

conditional on Pt or price ratios.

Note that in Berk (1995, 1997), higher expected returns for low-priced stocks are due to higher sys-

tematic risks, which is different from ours.

6 The Size Effect

In this section, we study the expected return, conditional on the current price Pt. We show that the

conditional expected return decreases with Pt. We also compute the expected return conditional on price

deciles.

Note that the return is,

Pt+1 + Dt+1

Pt
=

Vt+1

Vt
e∆t+1−∆t +

Dt+1

Vt
E[e∆t ]e−∆t . (20)

We are interested in the expected return, conditional on the current price Pt,

E
[
Pt+1 + Dt+1

Pt
|Pt

]
.

As we noted previously, the value return Vt+1+Dt+1

Vt
is determined by pricing models and may have system-

atic as well as idiosyncratic component; for our purpose, it is not necessary to specify this. Similarly, ∆t

may also have systematic components, as in Campbell and Kyle (1993). The systematic components will

not affect the inferences on individual noise in an economy with a large number of stocks, as we shown in

the appendix.

Note that pt = vt + ∆t − ln(E[e∆t ]). To draw inference of noise ∆t from price pt, we need to know

the joint distribution of vt and ∆t. It is natural to assume that the distribution of ∆t is its stationary

distribution, which has mean of 0 and variance of
σ2

ε∆
1−ρ2 . Since vt is not stationary, there is no natural choice

of distribution for vt. We will assume that vt is normal with mean v̄t and variance σ2
vt. From Assumptions

1, 2, 3, vt and ∆t are independent.
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Proposition 3 Suppose Assumptions 1, 2, and 3 hold. Furthermore, assume that the distribution of ∆t

is its unconditional distribution and the distribution of vt is normal with mean v̄t and variance σ2
vt. Then

the expected return conditional on Pt is

E
[
Pt+1 + Dt+1

Pt
|pt

]

= eµ+ 1
2
σ2

r


e

σ2
ε∆

1+ρ
P
−(1−ρ)γ1

t

E
[
P
−(1−ρ)γ1

t

] + e
−x̄v+

σ2
εx

2(1−ρ2
x)

+
σ2

ε∆
1−ρ2 P−γ1

t

E
[
P−γ1

t

]

 , (21)

where γ1 =
σ2

ε∆

(1−ρ2)σ2
vt+σ2

ε∆

.

The proof is given in the appendix. It is clear that the expected return, conditional on Pt, decreases with

Pt. The results from the proposition is intuitive. Consider the case where the noise is independent over

time (ρ = 0). In this case,
Pt+1

Pt
=

Vt+1

Vt
e∆t+1−∆t . (22)

The expectation of e∆t+1 conditional on ∆t is independent of ∆t when ρ = 0. Thus, the expected return

will be decreasing in ∆t. If there is a negative noise, the stock is under-valued, so that the subsequent

return is high on average. Clearly, we do not observe ∆t; however, we can infer information on ∆t from

observing Pt. That is, the price can be a noisy signal for the noise. Recall,

pt = vt + ∆t − ln(E[e∆t ]). (23)

Therefore, the higher the pt, the higher the probable pricing error, on average, and the lower the next

period return.

In this paper, we do not assume that ρ = 0, thus ∆t+1 need not be independent of ∆t. This is plausible

since some forms of pricing error may require months or years to be identified and corrected by the market.

When 0 < ρ < 1, the effect of noise on return should be reduced. In this case, a positive realization of

noise at time t implies on average a positive realiation at t + 1, although the it will be smaller. Suppose,

for example, the noise is persistent; in this case, ρ approaches 1, and ∆t is a random walk. If this is the

case, although the noise affects the market price, it does not affect the return because the error does not

correct over time; an under-valued stock remains under-valued.

We should remark that in Proposition 3, the parameter µ is assumed to be a constant. This implies

that the expected value return is independent of value vt, which is true in many asset pricing theories, such

as Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT) and can be obtained

more or less under homothetic preference. However, this assumption does not always hold. For example,

Black and Litterman (1992) assume that the risk premium of a stock should be proportional to its market

cap (which is price), which is an easy way to clear the market. In this case, µ depends linearly on vt.

Depending on relative magnitude of the coefficient of this linear dependence and the γ1, the conditional

expected return may decrease or increase with Pt.
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Fama and French (1992) provide an informative illustration of the size effect as follows. Stocks are

classified into deciles according to their market capitalization and the average return for each decile is

computed. We will term these averages the expected return conditional on deciles. These expected returns

demonstrate the cross-sectional variations in expected return conditional on size. The size spread is defined

to be the difference between the expected return conditional on the 10th decile and 1st decile, which is

more coarse measure of size effect. Both expected return conditional on deciles and size premium can be

computed in our model. Let δi by the following equation

N(δi) =
i

10
, i = 1, ..., 9,

where N(·) is the cumulative probability distribution function of the standard normal random variable,

δ0 = −∞, and δ10 = +∞. At time t, pt is normally distributed with mean p̄t and variance σ2
pt

= σ2
vt +

σ2
ε∆

1−ρ2 .

Therefore, pti = σptδi + p̄t, i = 0, 1, ..., 9, 10, divide pt-space into deciles.

Proposition 4 (Size Effect) Suppose that the assumptions of Proposition 3 hold, then the expected return
conditional on decile is

eµ+ 1
2
σ2

r

(
e

σ2
ε∆

1+ρ
N(p̂ti)−N(p̂ti−1)

0.1
+ e

−x̄v+
σ2

εx
2(1−ρ2

x)
+

σ2
ε∆

1−ρ2
N(p̌ti)−N(p̌ti−1)

0.1

)
, (24)

where p̂ti ≡ δi + (1− ρ)γ1σpt and p̌ti ≡ δi + γ1σpt, i = 1, ..., 9. The size spread is given by

eµ+ 1
2
σ2

r

(
e

σ2
ε∆

1+ρ
N(p̂t9) + N(p̂t1)− 1

0.1
+ e

−x̄v+
σ2

εx
2(1−ρ2

x)
+

σ2
ε∆

1−ρ2 N(p̌t9) + N(p̌t1)− 1
0.1

)
. (25)

The proposition can be proved from Proposition 3 by integration.

When σε∆ = 0, the conditional expected return is independent of Pt, and the return spreads between

two price deciles portfolios are zero. Similarly, as σvt increases, the spread decreases, because a higher σvt

is equivalent to a lower σε∆ .

For calibration, we use parameters given in Table 1. In addition, we need to specify σ2
vt. Since vt is not

stationary, there is no natural choice for v̄t and σ2
vt. Fortunately, v̄t does not affect the pt dependence. We

choose σ2
vt to be at the same order of magnitude σ2

r . With these parameters, the size spread is about 3%.

The more persistence the noise exhibits, the less effect it has on the spread. Thus, the spread decreases

with ρ for small ρ. However, for a given Σε∆ , the higher ρ leads to a higher unconditional variance of ∆,

which is assumed to be the prior distribution of ∆t, thus higher spread. This effects dominates for ρ near

1. Thus, the spread has an U-shaped dependence and thus a minimum, this feature makes it relatively

easier to generate higher spreads than lower spreads.

So far, we have examined a single stock; we have not consider noise in a multi-asset framework. If there

are multiple assets, we need to consider the correlations between the value returns and the correlations

between noise. We argue in the appendix that our results on price dependence still hold. Specifically, we

can still examine the price dependence of expected returns on a stock-by-stock basis, if the correlations are
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introduced through a factor structure and the number of asset is large.8 Roughly speaking, in this case,

we have infinitely many signals on a few factors. As such, the factors will be completely revealed and the

inference problem reduces to that without systematic factors.

Arnott, Hsu, and Moore (2005) and Arnott (2005a) propose noise as a likely source for size and value

effects. Hsu (2006) shows that mispricing premium may exist because there are investors with liquidity

needs. Berk (1997) and Arnott (2005b) suggest that size and value are highly interrelated and may be

proxies for a shared risk. Arnott and Hsu (2006) show that mean-reverting mispricing can lead to small

cap and value stock outperformance; however, they predict that size and value might subsume each other.

Brennan and Wang (2006) also use a similar model to explore asset pricing implication associated with

mispricing. Similar to Hsu (2006), they derive a return premium associated with mispricing. Specifically

they argue that common liquidity measures in finance may be proxies for mispricing and that estimated

liquidity premium is likely mispricing premium.

7 The Value Effect

Many empirical studies analyze expected returns conditional on price-fundamental ratios, such as price-

dividend ratio, price-book ratio, and price-earning ratios. In this section, we examine the price-dividend

ratio dependence of expected returns when noise is present. Conceptually, the analysis applies in the

same way to any price-fundamental ratio dependence. Since we have to specify dividend-price ratio for

computing return already, we choose the price-to-dividend ratio instead of other ratios to avoid additional

parameters.

In this section, we use the price-dividend ratio Xt ≡ Pt
Dt

= ept−dt to draw inference on the noise ∆t.

We will use xt to denote lnXt = pt − dt. Recall, when there is noise,

pt = vt + ∆t − ln(E[e∆t ]). (26)

The error also works itself into the price-dividend ratio,

pt − dt = vt − dt + ∆t − ln(E[e∆t ]). (27)

Thus, a high price-dividend ratio can be a signal for a high noise. This same logic applies equally for

price-book, price-earnings, and other price-fundamental ratios.

The specification of value-dividend ratio given in equation (7) implies the following relationship for the

price-dividend ratio,

pt+1 − dt+1

= (1− ρx)x̄v − (1− ρx) ln(E[e∆t ]) + ρx(pt − dt) + (ρ− ρx)∆t + σεxεxt+1 + σε∆εt+1. (28)

8Note that this is the assumption needed for APT to hold.
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Denoting xt = pt − dt, we have,

xt+1 = (1− ρx)x̄ + ρxxt + (ρ− ρx)∆t + σεxεxt+1 + σε∆ε∆t+1, (29)

where x̄ = x̄v − ln(E[e∆t ]) is the mean of xt. We make the standard assumption that value-dividend

ratio is stationary, which means that xt+1 is stationary, thus ρx < 1. The above equation implies that

the (log) price-dividend ratio xt is a signal on the noise ∆t. This implies that price-dividend ratio and

other price-fundamental ratios could provide inference on the noise. Since xt is stationary, we can use its

unconditional distribution as the prior distribution for inference.

Proposition 5 Suppose that Assumptions 1, 2, and 3 hold. Furthermore, assume that the distribution of
(∆t, xt) is their unconditional distribution. Then the expected return conditional on xt is

E
[
Pt+1 + Dt+1

Pt
|xt

]

= eµ+ 1
2
σ2

r


e

σ2
ε∆

1+ρ
X
−(1−ρ)γ2

t

E
[
X
−(1−ρ)γ2

t

] + e
−x̄v+

σ2
εx

2(1−ρ2
x)

+
σ2

ε∆
1−ρ2 X

−(1−ρx)γ2−ρx

t

E
[
X
−(1−ρx)γ2−ρx

t

]

 ,

where γ2 =
(1−ρ2

x)σ2
ε∆

(1−ρ2
x)σ2

ε∆
+(1−ρ2)σ2

εx
.

The proof is given in the Appendix. The intuition for the xt dependence is the same as the intuition for

the pt dependence explored in in Section 6. A high price-dividend ratio implies a high noise ∆t, on average,

thus a low expected return.

Proposition 5 also implies that the return is predicted by the dividend yield even though the value return

is not. This is not surprising because there is a one-to-one correspondence between excess volatility and

dividend yield predictability. That is, while return exhibits excess volatility relative to dividend variation,

value return does not, and while dividend yield predicts return, it does not predict value return. Note that

both the excess volatility and dividend yield predictability puzzle results from noise instead of a rational

equilibrium.

We can also compute the expected return conditional on value deciles, following Fama and French

(1992). At time t, xt is normally distributed with mean x̄ and variance σ2
εx

1−ρ2
x

+
σ2

ε∆
1−ρ2 . Therefore, xi =√

σ2
εx

1−ρ2
x

+
σ2

ε∆
1−ρ2 δi + x̄, i = 0, 1, ..., 9, 10, divides xt-space into deciles. We will term the difference in the

expected returns between 1st and 10th decile the value spread.

Proposition 6 (Value Effect) Suppose assumptions in Proposition 5 hold. Then the expected return
conditional on value decile is

eµ+ 1
2
σ2

r

(
e

σ2
ε∆

1+ρ
N(x̂i)−N(x̂i−1)

0.1
+ e

−x̄v+
σ2

εx
2(1−ρ2

x)
+

σ2
ε∆

1−ρ2 N(x̌i)−N(x̌i−1)
0.1

)
, (30)

where x̂i ≡ δi + (1 − ρ)γ2

√
σ2

εx
1−ρ2

x
+

σ2
ε∆

1−ρ2 and x̌i = δi +
(
(1 − ρx)γ2 + ρx

)√
σ2

εx
1−ρ2

x
+

σ2
ε∆

1−ρ2 , i = 1, ..., 9. The

value spread is given by

eµ+ 1
2
σ2

r

(
e

σ2
ε∆

1+ρ
N(x̂9) + N(x̂1)− 1

0.1
+ e

−x̄v+
σ2

εx
2(1−ρ2

x)
+

σ2
ε∆

1−ρ2 N(x̌9) + N(x̌1)− 1
0.1

)
. (31)
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The proposition can be proved from Proposition 5 by integration.

For the parameters given in Table 1, the value spread is about 6%. The dependence on ρ is more

sensitive for the value spread, primarily due to the fact that the volatility σx of price-dividend ratio xt is

much smaller than that of the volatility σvt of the value vt.

8 The Size-Value Effect

So far, we have studied the expected return conditional on either the price or the price-dividend ratio alone.

We now compute the expected return conditional on the price and price-dividend ratio simultaneously.

In our model, the size and value effects are both driven by the same source: the noise in the price.

Conversely, both price pt and price-dividend ratio pt − dt are noisy signals of ∆t. We assume that the

correlation between vt and vt− dt is zero, however, there is an imperfect correlation between pt and pt− dt

induced by the noise ∆t. When pt is low, it is likely that ∆t is negative, but we are not sure, because the

value vt is not observed. When both pt and pt − dt are low, it is more likely that ∆ is negative. Thus pt

and pt − dt are correlated but not a substitute of each other. Using both of them simultaneously gives us

more precise information about ∆t.

Proposition 7 Suppose Assumptions 1, 2, and 3 hold. Furthermore, assume that the distribution of
(∆t, xt) is their unconditional distribution and the distribution of vt is normal with mean v̄t and variance
σ2

vt. Then the expected return conditional on pt and xt is,

E
[
Pt+1 + Dt+1

Pt
|xt, pt

]

= eµ+ 1
2
σ2

r


e

σ2
ε∆

1+ρ
P
−(1−ρ)γ3

t X
−(1−ρ)γ4

t

E
[
P
−(1−ρ)γ3

t X
−(1−ρ)γ4

t

] + e
−x̄v+

σ2
εx

2(1−ρ2
x)

+
σ2

ε∆
1−ρ2 P

−(1−ρx)γ3

t X
−(1−ρx)γ4−ρx

t

E
[
P
−(1−ρx)γ3

t X
−(1−ρx)γ4−ρx

t

]

 ,

where γ3 =
1

σ2
vt

1

σ2
vt

+
1−ρ2

x
σ2

εx
+ 1−ρ2

σ2
ε∆

and γ4 =
(1−ρ2

x)

σ2
εx

1

σ2
vt

+
1−ρ2

x
σ2

εx
+ 1−ρ2

σ2
ε∆

.

The proof is given in the Appendix. We assume that the correlation between vt and vt − dt is zero for

notational simplicity. Incorporation of a non-zero correlation is straightforward.

Fama and French (1992) use the matrix of expected return conditional on size and value deciles to

demonstrate the size and value effects. Next we compute these conditional expected returns using our

model. We first divide (pt, xt) space into cells of 10 deciles by 10 deciles. Note that pt and xt are joint

normal with variances
√

σ2
vt + σ2

e
1−ρ2 and

√
σ2

x
1−ρ2

x
+ σ2

e
1−ρ2 and correlation ρ̂ =

σ2
ε∆

1−ρ2

σpt

√
σ2

εx
1−ρ2

x
+

σ2
ε∆

1−ρ2

. Following

Fama and French, we will first use pti to divided pt space into 10 deciles. For i-th size decile, we further

divide xt space into 10 deciles, using xi,j =
√

σ2
x

1−ρ2
x

+ σ2
e

1−ρ2 δi,j + x̄, where δi,j can be solved numerically. Let

E
[
f(z)|zz

]
denote the expectation of f(z) for z between z and z for a standard normal random variable z .
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Proposition 8 (Size-Value Effect) Suppose that assumptions in Proposition 7 hold. Then the expected
return conditional on (i, j) decile of (pt, xt) space is,

eµ+ 1
2
σ2

r




e
σ2

ε∆
1+ρ

E

[(
N

(
ˆ̂pi+1−ρ̂z√

1−ρ̂2

)
−N

(
ˆ̂pi−ρ̂z√

1−ρ̂2

))∣∣∣∣
ˆ̂xi,j+1

ˆ̂xi,j

]

0.01

+ e
−x̄v+

σ2
εx

2(1−ρ2
x)

+
σ2

ε∆
1−ρ2

E

[(
N

(
ˇ̌pi+1−ρ̂z√

1−ρ̂2

)
−N

(
ˇ̌pi−ρ̂z√

1−ρ̂2

))∣∣∣∣
ˇ̌xi,j+1

ˇ̌xi,j

]

0.01




,

where ˆ̂pti ≡ δi+(1−ρ)

(
γ3σpt + ρ̂γ4

√
σ2

εx
1−ρ2

x
+

σ2
ε∆

1−ρ2

)
, ˆ̂xi,j ≡ δi,j+(1−ρ)

(
γ4

√
σ2

εx
1−ρ2

x
+

σ2
ε∆

1−ρ2 + ρ̂γ3σpt

)
, ˇ̌pti ≡

δi +(1−ρx)

(
γ3σpt + ρ̂γ4

√
σ2

εx
1−ρ2

x
+

σ2
ε∆

1−ρ2

)
, and ˇ̌xi, = δi,j +

(
(1−ρx)γ4+ρx

)√
σ2

εx
1−ρ2

x
+

σ2
ε∆

1−ρ2 +(1−ρx)ρ̂γ3σpt,

i = 1, ..., 9, and z is a standard normal random variable.

The proof is given in the appendix.

Let us consider the case where there are many stocks with correlations between stock returns. We

show that, in the appendix, if the correlations in the returns as well as noise is introduced through a factor

model, the inference on ∆t is the same as if there is no factor. This means that, Propositions 3–8 hold when

the correlations are through factors, provided we replace the variance parameters by their idiosyncratic

components.

Suppose the returns of all stocks are given by a factor model and all have the same beta and same

idiosyncratic volatility. Then the cross-section average are the same as population average, thus can be

computed using Propositions 3-8. So, these proposition imply cross-sectional variations in conditional

expected returns, even in the absence of parameter variation. The variation in this case is generated by

random realization of the price noise. Of course, parameter variations in reality, such as variations in betas

and idiosyncratic volatility, lead to additional cross-sectional variations in expected returns. Next we will

show that these variations are consistent with those observed in the US data, with plausible parameters.

For the calibration exercise, we use parameters specified in Table 1. We present expected returns

conditional on both size and value in Table 2. The intuition for the table is simple. Decile expected

returns are really expected returns conditional on price intervals or price-ratio intervals, which decreases

with price and/or price-ratios, as shown in the table. We assume that stocks are independent draws from

the same distribution.

It is interesting to compare Table 2 with Table V of Fama-French (1992), which are sample average of

returns conditional on size and price-to-book deciles. As we pointed out earlier, we choose price-dividend

deciles mainly to avoid extra parameters. We expect the difference in using price-dividend ratio and price-

book ratio to be small. The expected returns our Table 2 are similar to those of Table V of Fama and
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Table 2: Expected Annual Returns Conditional on Size and Value Deciles

Dividend-to-Price Ratio
All 1 2 3 4 5 6 7 8 9 10

All 10.08 7.52 8.50 9.03 9.45 9.84 10.22 10.62 11.08 11.68 12.89
Small-ME 11.63 9.08 10.04 10.56 10.98 11.36 11.73 12.13 12.58 13.17 14.36

ME-2 11.00 8.49 9.44 9.95 10.37 10.74 11.11 11.51 11.95 12.53 13.71
ME-3 10.67 8.18 9.13 9.64 10.05 10.43 10.80 11.19 11.63 12.21 13.39
ME-4 10.42 7.94 8.88 9.39 9.80 10.18 10.55 10.94 11.38 11.95 13.13
ME-5 10.19 7.72 8.66 9.17 9.58 9.95 10.32 10.71 11.15 11.73 12.90
ME-6 9.97 7.51 8.45 8.95 9.36 9.74 10.11 10.49 10.93 11.51 12.68
ME-7 9.74 7.29 8.23 8.73 9.14 9.51 9.88 10.27 10.71 11.28 12.45
ME-8 9.49 7.04 7.98 8.49 8.89 9.27 9.63 10.02 10.46 11.03 12.20
ME-9 9.17 6.74 7.67 8.18 8.58 8.95 9.32 9.71 10.14 10.71 11.87

Large-ME 8.56 6.13 7.07 7.57 7.98 8.35 8.72 9.10 9.54 10.11 11.27

This table presents annual expected returns, in percentage, conditional on price (ME) and dividend-to-price deciles. These
expected returns are computed using Proposition 8 with the parameters given by Table 1. The beta in the absence of noise is
assumed to be 1.

Table 3: Beta Conditional on Size and Value Deciles

Dividend-to-Price Ratio
All 1 2 3 4 5 6 7 8 9 10

All 1.005 0.971 0.984 0.991 0.997 1.002 1.007 1.012 1.018 1.025 1.040
Small-ME 1.019 0.984 0.998 1.005 1.011 1.016 1.021 1.026 1.032 1.040 1.054

ME-2 1.013 0.979 0.992 1.000 1.005 1.010 1.015 1.021 1.026 1.034 1.048
ME-3 1.010 0.976 0.990 0.997 1.002 1.007 1.012 1.018 1.023 1.031 1.045
ME-4 1.008 0.974 0.987 0.994 1.000 1.005 1.010 1.015 1.021 1.028 1.043
ME-5 1.006 0.972 0.985 0.992 0.998 1.003 1.008 1.013 1.019 1.026 1.041
ME-6 1.004 0.970 0.983 0.990 0.996 1.001 1.006 1.011 1.017 1.024 1.039
ME-7 1.002 0.968 0.981 0.988 0.994 0.999 1.004 1.009 1.015 1.022 1.037
ME-8 1.000 0.966 0.979 0.986 0.992 0.997 1.002 1.007 1.013 1.020 1.034
ME-9 0.997 0.963 0.976 0.983 0.989 0.994 0.999 1.004 1.010 1.017 1.031

Large-ME 0.991 0.957 0.971 0.978 0.984 0.989 0.993 0.999 1.004 1.012 1.026

This table presents beta of price (ME) and dividend-to-price deciles. The parameters are given by Table 1.

French (1992), when annualized. The expected returns are monotonic as a functions of deciles while the

monotonicity is not strict in Table V of Fama and French (1992), presumably because of measurement

errors in the sample averages.

It is important to determine whether small and value stocks have higher expected returns because

they have higher systematic risks. In Table 3, we present the beta matrix for size-value deciles. Assuming

that beta in the absence of noise is 1, small and value stocks have a slightly higher beta. Stocks in the

smallest decile have a beta of 1.02 while those in the largest decile has a beta of 0.99. Similarly, Stocks

in the lowest dividend-price ratio decile have a beta of 0.98 while those in the highest decile has a beta

of 1.03. This finding is consistent Lakonishok, Shleifer, and Vishny (1994) who find that “the betas of

value portfolios with respect to the value-weighted index tend to be about 0.1 higher than the betas of the

glamour portfolios.”

Assuming an annual riskfree return of 1.04, we can compute the abnormal return alpha, that is, the

risk-adjusted excess expected return for each size and value decile with betas given in Table 3. We present
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Table 4: Alpha Conditional on Size and Value Deciles

Dividend-to-Price Ratio
All 1 2 3 4 5 6 7 8 9 10

All 0.24 -1.43 -0.76 -0.41 -0.13 0.12 0.36 0.61 0.89 1.24 1.93
Small-ME 1.67 -0.03 0.65 1.01 1.29 1.55 1.79 2.05 2.33 2.69 3.40

ME-2 1.09 -0.59 0.08 0.44 0.71 0.96 1.21 1.45 1.74 2.10 2.79
ME-3 0.79 -0.89 -0.21 0.14 0.41 0.66 0.91 1.16 1.44 1.79 2.48
ME-4 0.55 -1.12 -0.45 -0.10 0.18 0.43 0.67 0.92 1.20 1.55 2.24
ME-5 0.34 -1.33 -0.66 -0.31 -0.03 0.22 0.46 0.71 0.99 1.34 2.03
ME-6 0.14 -1.53 -0.86 -0.51 -0.24 0.01 0.25 0.50 0.78 1.13 1.82
ME-7 -0.08 -1.74 -1.07 -0.72 -0.45 -0.20 0.04 0.29 0.57 0.92 1.60
ME-8 -0.31 -1.97 -1.30 -0.96 -0.68 -0.44 -0.20 0.05 0.33 0.68 1.37
ME-9 -0.61 -2.26 -1.60 -1.25 -0.98 -0.73 -0.49 -0.24 0.03 0.38 1.07

Large-ME -1.18 -2.84 -2.17 -1.82 -1.55 -1.30 -1.06 -0.81 -0.54 -0.18 0.50

This table presents annual alpha, in percentage, of price (ME) and dividend-to-price deciles. The parameters are given by
Table 1 and the gross riskfree return is assumed to be 1.04.

alpha in Table 4. Small and value stocks have positive alpha while the large and glamor stocks have

negative alpha. Stocks in the smallest decile have an alpha of 1.67% while those in the largest decile have

an alpha of -1.18%. Similarly, stocks in the lowest dividend-price-ratio decile have an alpha of -0.98% while

those in the highest dividend-price-ratio decile have an alpha of 1.47%. These two tables show that, in our

model, small and value stocks have higher expected returns because they are under-valued due to negative

price noise, not because there have higher betas.

One might wonder if these alphas persist over time. On the one hand, it is possible that alphas may

be eliminated over time. On the other hand, it is possible that they will persist over time because of limits

to arbitrage, associated with either transaction costs or risks in the strategies to explore these alphas.

As a model for the cross section of expected return, our paper is different from Berk (1995, 1997).

The heterogeneity of expected return is mainly driven by the random realization of the noise, while it is

specified in terms of the heterogeneity of the beta. Suppose that stock returns are identically distributed

but correlated through systematic factors. In this case, there is no cross-section variation in expected

returns and the correlation between price and the expected return will be zero, under Berk. By contrast,

under our framework, a stock with a lower price still has a higher expected return. On the other hand,

one can have an example where there is correlation between price and return but no conditional spreads.

The expected returns conditional on the price deciles in Propositions 4, 6, and 8 are state independent.

It is possible that the size and value effects may be state dependent, for example, there are empirical studies

documenting that the size and value spreads are different between booms and recessions. The most natural

way to introduce the state dependence in our model is through the state-dependence of the conditional

variance of noise. This can be potentially used to accommodate the dependence on business cycles of size

and value effects.

Summers (1986) argues that “the data in conjunction with current methods provide no evidence against

the view that financial market prices deviate widely and frequently from rational valuations.” We would
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like to argue that the size and value effects are evidence for the view that financial market prices deviate

from values.

9 Conditioning on Past Prices

In previous sections, we have studied the expected return, conditional on current prices and/or price ratios.

In this section, we will study the expected returns conditional on both current and past prices. We can

also compute the expected return conditional on past price-ratios as well; we choose prices to be the

conditioning variables for notational simplicity.

We first consider the expected return conditional on past return ert . That is, we are interested in the

mean of Pt+1

Pt
conditional on the previous period return9 Pt

Pt−1
= ert . A high return rt implies a high ∆t and

low ∆t−1 on average, thus lower expected return for t + 1. This is the return reversal effect.

Proposition 9 (Conditioning on Return) If Assumptions 1, 2, and 3 hold, the expected return at time
t + 1 conditional on return Rt is,

E
[
Pt+1 + Dt+1

Pt
|rt

]
= eµ+ 1

2
σ2

r


e

σ2
ε∆

1+ρ
R
−(1−ρ)γ5

t

E
[
R
−(1−ρ)γ5

t

] + e
−x̄v+

σ2
εx

2(1−ρ2
x)

+
σ2

ε∆
1−ρ2 R−γ5

t

E
[
R−γ5

t

]

 ,

where γ5 =
− 1

1+ρ
σ2

ε∆
rt

σ2
ε∆

+σ2
r+(1−ρ)2

σ2
ε∆

1−ρ2

. The conditional expected return decreases with rt for ρ < 1.

The proof is given in the Appendix.

According to Proposition 9, a mean-reverting noise lead to return reversal. That is, the expected

return, conditional on past return, decreases with the past return. In the US market data, return reversal

is observed for horizons greater than 2 years (DeBondt and Thaler (1985, 1987) and Chopra, Lakonishok

and Ritter (1992)). However, return momentum, which means that the expected return increases with the

past return, is observed for horizons less than 1 year (Jegadeesh and Titman, (1993, 2001)). Thus the

observed expected return conditional past return cannot be explained by mean-reverting noise, at least for

horizon less than 1 year.

Note that conditioning on return Pt/Pt−1 is different from conditioning on past prices Pt and Pt−1

separately, which we turn to next.

So far, we have conditioned on current prices or price ratios to produce size and value effects and on

past return Pt
Pt−1

to produce momentum and reversal effects. However, it is obvious that one should use

the full price history. We now consider the time t + 1 expected return conditional on past market prices,

Ps, for s = t, t − 1, ..., t0. Our analysis can be extended to include past price-ratios. We only present the

case for past prices for ease of exposition.
9Strictly speaking, the previous-period return should be Pt+Dt

Pt−1
. However, we do not have the closed form solution for the

inference of ∆t. Nevertheless, the intuition still applies.
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We would like to compute,

E
[
Pt+1 + Dt+1

Pt
|{ps}t

t0

]
, (32)

where t0 ≤ t. That is, the expected return from time t to t + 1 conditional on prices from t0 to t. We

will need to additionally specify the prior distribution for vt0 and ∆t0 . We assume that ∆t0 is drawn from

the unconditional distribution of ∆t, which has a mean of 0 and variance of
σ2

ε∆
1−ρ2 . We assume that vt0 is

drawn from a normal distribution with a mean v̄t0 and σ2
vt0 . We assume that vt0 and ∆t0 are independent

in the prior distribution.

Proposition 10 (Conditioning on Current and Past Prices) Suppose Assumptions 1, 2, and 3 hold.
Furthermore assume that

1
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,
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where hp =
σ2

ε∆
−ρ(1−ρ)σ̄2

σ2
r+σ2

ε∆
+(1−ρ)2σ̄2 , he =

ρσ2
r+σ2

ε∆
σ2

r+σ2
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+(1−ρ)2σ̄2 , and ht0 = he

(
1− 1−ρ2

σ2
ε∆

σ̄2 − hp

)
.

Again, we include the proof in the Appendix. We use the convention for the product operator
∏j

s=i that

the product is 1 if the upper index j is smaller than the lower index i.

According to Equation (33), the conditional expected return decreases with the current price but

increases with past prices. Note that he < 1; past prices are discounted by powers of he in the conditional

expected returns, the further away in the past, the higher the discount and the lower the relevance to next

period return.

In general, the variance of ∆t conditional on past prices depends on t0. However, when t − t0 → ∞,

this variance goes to a constant, which can be shown to be σ̄2. The technical condition at the beginning of

the proposition implies that the conditional variance reaches σ̄2 at time t0 and is assumed only to simplify

the notation. In the Appendix, we show results for the general case.

10 Conclusion

In this paper, we propose that noise as a source for cross-sectional variations in expected returns. When

there is noise in market price, the unconditional expected return depends not only on beta but also on the
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idiosyncratic volatility, price-to-dividend ratio, and volatility of the noise.

More important, we show that random realizations of noise generate cross-sectional variations in ex-

pected return conditional on price and price ratios. In particular, with plausible parameters, such as a

noise volatility of 6% per annum, the matrix of expected return conditional on size and value deciles is

similar to that of Fama and French (1992). Since the difference in beta for different size and value deciles

is small in our model, small and value stocks have higher expected return because they are under-valued

due to price noise, not because of higher systematic risk. Thus our results suggest that noise create size

and value effect.

Black argues that noise should always be present because investors are risk averse and are not sure

whether information is just pure noise. According to Black (1986), “noise creates the opportunities to

trade profitably, but at the same time makes it difficult to trade profitably.” If Black is right, size and

value effects are likely to continue to persist.

In classic efficient markets, the future prospects of an investment tacitly rise and fall with share price,

so that the internal rate of return (IRR) of an investment will not be advantaged by a drop in price or

disadvantaged by an increase. Our assumptions, for this simplistic example, stand in stark contrast-when

prices rise the subsequent IRR will fall and when prices fall the IRR will rise. This results in stock price

reversion towards value, perturbed by a steady flow of new noise.

Given the volatility of share prices, it is unlikely that either positive or negative serial correlation,

tied to reversion towards the unknowable discounted true fair value, will be evident in any statistically

significant fashion. The signal-to-noise of this particular part of the return would be so low as to be very

difficult to tease out of the data except in aggregate data across many samples and many years of data.

Isnt this precisely the pattern that has been observed time and again in empirical studies, spanning many

time intervals and markets?

One attractive feature of this model is that it can be tested empirically. By accepting the principle of

decoupling price from value, with a mean-reverting error, we can empirically measure the parameters of

this model. For example, a narrow case of our model applies if we assume that the future is fixed and that

price is merely the markets current estimate of a deterministic value. That is, if we have a crystal ball

which allows us to see the future, we can discount it back to a current Net Present Value, which rises with

the passage of time with zero variance. One can, for example, take all stocks in existence ten, twenty, thirty

or forty years ago, and all subsequent cash flows (using the current price as a proxy for remaining future

cash flows), and compute the original value and noise term, and, based on subsequent returns, observe the

historical mean reversion and volatility of the pricing error. Both may well by time-varying, not static.

Our model assumes that noise is independent of the value and the dividend. One could examine the

implications of relaxing that assumption. Indeed, for certain forms of dependence, we would expect that

the value and size effects should disappear. Empirical evidence clearly does not support this form of the
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model. But, if enough investors trade on size and value, arbitrage could force this outcome.

Our model assumes static parameters describing the noise function. By empirically observing the

time-varying nature of these parameters, we may well find that the growth-value cycle is nothing more

than a manifestation of expansion and contraction of the noise variance. We may find a linkage between

economic expansion and contraction, or bull and bear markets, and the parameters of our model, notably

noise variance. This may allow us to better understand the link between the economic cycle and the

growth-value cycle.

If noise varies cross-sectionally, as it presumably will, one can model and empirically test the impact

of a world in which some stocks may have more noise than others, and some stocks may mean-revert more

quickly than others. Because the difference between average return and average value return is proportional

to the variance of the noise and to the rate of mean reversion, this would suggest starkly different behavior

and mean returns for assets with little uncertainty about value (e.g., short-term bonds), relative to assets

with large uncertainty (e.g., venture capital and private equity).

In short, this simple change in the classic Efficient Market Hypothesis acknowledging the possibility

of mean-reverting noise, perhaps too small to statistically discern not only better conforms with past

empirical findings, but also opens wide opportunities for further research.
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Appendix

The following lemma is special case studied in Liptser and Shiryaev (1977).

Lemma 1 Suppose that θ is a vector of normal random variables with the mean vector θ̄ and the variance-
covariance matrix Σθ. Furthermore, a vector of random variables ξ satisfies

ξ = A0 + A1θ + Bε,

where ε is a vector of standard normal random variables that are independent of θ. Assuming that A1ΣθA
′
1+

BB′ is invertible. Then mean vector E[θ|ξ] of θ conditional on ξ and the variance-covariance matrix Σθ|ξ
conditional on ξ are

E[θ|ξ] = θ̄ + ΣθA
′
1(A1ΣθA

′
1 + BB′)−1(ξ −A0 −A1θ̄).

and
Σθ|ξ = Σθ − ΣθA

′
1(A1ΣθA

′
1 + BB′)−1A1Σθ.

We will apply this lemma repeatedly. In our applications, θ will be the noise ∆t, ξ will be the price pt or

the price-dividend ratio pt − dt, and ε will be the other random variables such as εrt ( or Ft later in the

Appendix).

Proof of Proposition 3

Proof. Note that

pt = vt + ∆t − ln(E[e∆t ]).

We will assume that without information, vt is normal with mean of v̄t and variance σ2
vt, the distribution

of ∆t is its unconditional distribution of mean 0 and variance
σ2

ε∆
1−ρ2 . vt and ∆t is independent, as assumed.

Lemma 1 in the appendix implies that conditional on pt, the mean of ∆t is
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Therefore, we get
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Finally,
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From

vt+1 − dt+1 = (1− ρx)x̄v + ρx(vt − dt) + σεxεxt+1,

we get
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We get
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The above equation can be expressed in terms of Pt using the definition of Pt = ept . It is straightforward

to evaluate E


e

− (1−ρ)σ2
ε∆

(1−ρ2)σ2
v+σ2

ε∆

pt


 and E


e

− σ2
ε∆

(1−ρ2)σ2
v+σ2

ε∆

pt


 and prove the equivalence between the above

equation implies the equation given in the proposition.

Proof of Proposition 5

At time t,

xt = (vt − dt) + ∆t − ln(E[e∆t ]).

We assume that vt − dt and ∆t are both drawn from the stationary distribution, under which vt − dt is

normal with a mean of x̄v and a variance of σ2
εx

1−ρ2
x

and is independent of ∆t and ∆t is normal with a mean

of 0 and a variance of
σ2

ε∆
1−ρ2

e
.

Therefore, conditional on xt, the mean of ∆t is

(1− ρ2
x)σ2

ε∆

(1− ρ2
x)σ2

ε∆
+ (1− ρ2)σ2

εx

(
xt − x̄

)
,
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where x̄ = x̄v − ln(E[e∆t ]) is the unconditional mean of x, and the variance is

σ2
εx

σ2
ε∆

(1− ρ2
x)σ2

ε∆
+ (1− ρ2)σ2

εx

.

Thus, we get

E
[
e−(1−ρ)∆t |xt

]
= e

−(1−ρ)
(1−ρ2

x)σ2
ε∆

(1−ρ2
x)σ2

ε∆
+(1−ρ2)σ2

εx
(xt−x̄)

e
(1−ρ)2

2

σ2
εxσ2

ε∆
(1−ρ2

x)σ2
ε∆

+(1−ρ2)σ2
εx

= e

(1−ρ)(1−ρ2
x)σ2

ε∆
x̄+

(1−ρ)2

2 σ2
εx σ2

ε∆
(1−ρ2

x)σ2
ε∆

+(1−ρ2)σ2
εx e

− (1−ρ)(1−ρ2
x)σ2

ε∆
(1−ρ2

x)σ2
ε∆

+(1−ρ2)σ2
εx

xt

.

The first equality of the equation in the proposition obtains by noting that

E
[
Pt+1

Pt
|xt

]
= eµ+ 1

2
(σ2

r+σ2
ε∆

)E
[
e−(1−ρ)∆t |xt

]
.

The second equality follows from the definition of Xt = ext . From

vt+1 − dt+1 = (1− ρx)x̄v + ρx(vt − dt) + σεxεx
t+1,

we get

E
[
Dt+1

Pt
|xt

]
= E

[
Dt+1

Vte∆t−ln(E[e∆t ])
|xt

]
= E

[
Vt+1

Vt

Dt+1

Vt+1
e−∆t+ln(E[e∆t ])|xt

]

= E
[
eµ+σrεrt+1−(1−ρx)x̄v−ρx(vt−dt)−σεxεx

t+1−∆t+ln(E[e∆t ])|xt

]

= eµ+ 1
2
(σ2

r+σ2
εx )−(1−ρx)x̄v+ln(E[e∆t ])E

[
e−ρx(vt−dt)−∆t |xt

]

= eµ+ 1
2
(σ2

r+σ2
εx )−(1−ρx)x̄v+ln(E[e∆t ])E

[
e−ρx(xt−∆t+ln(E[e∆t ]))−∆t |xt

]

= eµ+ 1
2
(σ2

r+σ2
εx )−ρxxt−(1−ρx)x̄E

[
e−(1−ρx)∆t |xt

]
.

Finally,

E
[
Pt+1 + Dt+1

Pt
|xt

]
= eµ+ 1

2
σ2

r

(
e

1
2
σ2

ε∆E
[
e−(1−ρ)∆t |xt

]
+ e

1
2
σ2

εx−ρx(xt+ln(E[e∆t ]))E
[
e−(1−ρx)∆t |xt

])

= eµ+ 1
2
(σ2

r+σ2
ε∆

)e

(1−ρ)(1−ρ2
x)σ2

ε∆
x̄+

(1−ρ)2

2 σ2
εx σ2

ε∆
(1−ρ2

x)σ2
ε∆

+(1−ρ2)σ2
εx e

− (1−ρ)(1−ρ2
x)σ2

ε∆
(1−ρ2

x)σ2
ε∆

+(1−ρ2)σ2
εx

xt

+eµ+ 1
2
(σ2

r+σ2
εx )−(1−ρx)x̄e

(1−ρx)(1−ρ2
x)σ2

ε∆
x̄+

(1−ρx)2

2 σ2
εx σ2

ε∆
(1−ρ2

x)σ2
ε∆

+(1−ρ2)σ2
εx e

− (1−ρx)(1−ρ2
x)σ2

ε∆
(1−ρ2

x)σ2
ε∆

+(1−ρ2)σ2
εx

xt−ρxxt

.

It is straightforward to evaluate the expectations in the proposition and prove the equivalence between the

above equation implies the equation given in the proposition.

Proof of Proposition 7

At time t, we have two signals on ∆t,

pt = vt + ∆t − ln(E[e∆t ]);

xt = (vt − dt) + ∆t − ln(E[e∆t ]).
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Note that vt, vt−dt, and ∆t are have a distribution of normal with mean (v̄t, x̄v, 0) and a diagonal covariance

matrix with diagonal covariance matrix element of
(

σ2
vt,

σ2
εx

1−ρ2
x
,

σ2
ε∆

1−ρ2

)
. We can express the above equation

as

pt − v̄t + ln(E[e∆t ]) = (vt − v̄t) + ∆t;

xt − x̄ = (vt − dt − x̄v) + ∆t.

Therefore, conditional on pt and xt, the mean of ∆t is

1
σ2

vt
(pt − p̄t) + 1−ρ2

x
σ2

εx
(xt − x̄)

1
σ2

vt
+ 1−ρ2

x
σ2

εx
+ 1−ρ2

σ2
ε∆

.

and the variance is
1

1
σ2

vt
+ 1−ρ2

x
σ2

εx
+ 1−ρ2

σ2
ε∆

.

Thus

E
[
e−(1−ρ)∆t |pt, xt

]
= e

−(1−ρ)

1
σ2

vt

(pt−p̄t)+
1−ρ2

x
σ2

εx

(xt−x̄)

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ e

(1−ρ)2

2


 1

σ2
vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆




= e

(1−ρ)

(
1

σ2
vt

p̄t+
1−ρ2

x
σ2

εx

x̄

)
+

(1−ρ)2

2

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ e

−(1−ρ)

σ2
vt

pt

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ e

−(1−ρ)
1−ρ2

x
σ2

εx

xt

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ .

The first equality of the equation in the proposition obtains by noting that

E
[
Pt+1

Pt
|xt, pt

]
= eµ+ 1

2
(σ2

r+σ2
ε∆

)E
[
e−(1−ρ)∆t |xt, pt

]
.

The second equality follows from the definitions Pt = ept and Xt = ext . Note that

vt+1 − dt+1 = (1− ρx)x̄v + ρx(vt − dt) + σεxεx
t+1,

E
[
Dt+1

Pt
|xt

]
= E

[
Dt+1

Vte∆t−ln(E[e∆t ])
|xt

]
= E

[
Vt+1

Vt

Dt+1

Vt+1
e−∆t+ln(E[e∆t ])|pt, xt

]

= eµ+ 1
2
(σ2

r+σ2
εx )−(1−ρx)x̄−ρxxtE

[
e−(1−ρx)∆t |pt, xt

]
.

Finally,

E
[
Pt+1 + Dt+1

Pt
|xt

]
= E

[
Pt+1

Pt
|xt

]
+ E

[
Dt+1

Vte∆t
|xt

]

= eµ+ 1
2
(σ2

r+σ2
ε∆

)E
[
e−(1−ρ)∆t |xt, pt

]
+ eµ+ 1

2
(σ2

r+σ2
εx )−(1−ρx)x̄−ρxxtE

[
e−(1−ρx)∆t |pt, xt

]

= eµ+ 1
2
(σ2

r+σ2
ε∆

)e

(1−ρ)2

2

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ e

−(1−ρ)

σ2
vt

(pt−p̄t)

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ e

−(1−ρ)(1−ρ2
x)

σ2
εx

(xt−x̄)

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆

+eµ+ 1
2
(σ2

r+σ2
εx)−(1−ρx)x̄−ρxxte

(1−ρx)2

2

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ e

−(1−ρx)

σ2
vt

(pt−p̄t)

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ e

−(1−ρx)(1−ρ2
x)

σ2
εx

(xt−x̄)

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆
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= eµ+ 1
2
(σ2

r+σ2
ε∆

)e

(1−ρ)

(
1

σ2
vt

p̄t+
1−ρ2

x
σ2

εx

x̄

)
+

(1−ρ)2

2

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ P

−(1−ρ)

σ2
vt

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆

t X

−(1−ρ)(1−ρ2
x)

σ2
εx

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆

t

+eµ+ 1
2
(σ2

r+σ2
εx

)−(1−ρx)x̄e

(1−ρx)

(
1

σ2
vt

p̄t+
1−ρ2

x
σ2

εx

x̄

)
+

(1−ρx)2

2

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆ P

−(1−ρx)

σ2
vt

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆

t X

−(1−ρx)(1−ρ2
x)

σ2
εx

1
σ2

vt

+
1−ρ2

x
σ2

εx

+
1−ρ2

σ2
ε∆

−ρx

t .

It is straightforward to evaluate the expectations in the proposition and prove the equivalence between the

above equation implies the equation given in the proposition.

Proof of Proposition 8

Let σxt =
√

1−ρ2
x

σ2
εx

+ 1−ρ2

σ2
ε∆

. Without loss of generality, we can assume that the means of pt and xt are zero.

We need to compute

E[e−(φ1pt+φ2xt)|R1]

where R1 = {σptδi ≤ pt ≤ σptδi+1, σxtδi,j ≤ xt ≤ σxtδi,j+1}, for various φ1 and φ2. Define q and z by the

following equations.

pt =
√

1− ρ̂2σptq + ρ̂σptz,

xt = σxtz.

Using the fact that pt and xt have variances of σ2
pt and σ2

xt and covariance of ρ̂σptσxt, we can show that q

and z are independent standard normals. By changing the variable from (pt, xt) to (q, z), we get,

E[e−(φ1pt+φ2xt)|R1] = E[e−(φ1(
√

1−ρ2σptq+ρσptz)+φ2σxtz)|R2]

= E[e−φ1

√
1−ρ2σptq−(φ1ρσpt+φ2σxt)z|R2],

where R2 = {δi ≤
√

1− ρ2q + ρz ≤ δi+1, δi,j ≤ z ≤ δi,j+1}. Integrating out q, we get,

E[e−φ1

√
1−ρ2σptq−(φ1ρσpt+φ2σxt)z|R2] = e

1
2
φ2

1σ2
pt(1−ρ2)E[e−(φ1ρσpt+φ2σxt)z(N(x1)−N(x2))|R3],

where x1 = δi+1−ρz√
1−ρ2

+ φ1

√
1− ρ2σpt, x2 = δi−ρz√

1−ρ2
+ φ1

√
1− ρ2σpt, R3 = (δi,j , δi,j+1). One can show that

e
1
2
φ2

1σ2
pt(1−ρ2)E[e−(φ1ρσpt+φ2σxt)z(N(x1)−N(x2))|R3]

= e
1
2
(φ2

1σ2
pt+ρφ1φ2σptσxt+φ2

2σ2
xt)E[(N(x3)−N(x3))|R4]

= E[e−(φ1pt+φ2xt)(N(x3)−N(x4))|R4],

x3 = δi+1−ρz+(φ2ρσxt+φ1σpt)√
1−ρ2

, x4 = δi−ρz+(φ2ρσxt+φ1σpt)√
1−ρ2

, R4 = (δj + φ1ρσpt + φ2σxt, δj+1 + φ1ρσpt + φ2σxt).

Noting that e
1
2
(φ2

1σ2
pt+ρφ1φ2σptσxt+φ2

2σ2
xt)E[= E[e−(φ1pt+φ2xt)], we get

E[e−(φ1pt+φ2xt)|R1] = E[e−(φ1pt+φ2xt)]E[(N(x3)−N(x4))|R4].

The proposition is proved by noting that the expected value of e−(φ1pt+φ2xt) conditional R1 is E[e−(φ1pt+φ2xt)|R1]

divided by the probability of R1, which is 0.01.
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Proof of Proposition 9

We will first consider the expected return conditional on return. That is, we are interested in the mean of

Pt+1 + Dt+1

Pt

conditional on the return of previous period

Pt

Pt−1
= ert .

From the assumption that Vt+1

Vt
= eµ+σrεrt+1 , we get

µ + σrεrt − (1− ρ)∆t−1 + σε∆εet = rt.

Thus,

σrεrt − (1− ρ)∆t−1 + σε∆εet = rt − µ.

Therefore,

E[−(1− ρ)∆t−1|rt] =
(1− ρ)2

σ2
ε∆

1−ρ2 (rt − µ)

σ2
ε∆

+ σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

;

E[σε∆εet|rt] =
σ2

ε∆
(rt − µ)

σ2
ε∆

+ σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

,

and

E[(− (1− ρ)∆t−1)
2|rt] =

(σ2
ε∆

+ σ2
r )(1− ρ)2

σ2
ε∆

1−ρ2

σ2
ε∆

+ σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

;

E[(σε∆εet)2|rt] =
σ2

ε∆

(
σ2

r + (1− ρ)2
σ2

ε∆
1−ρ2

)

σ2
ε∆

+ σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

,

E[
(
− (1− ρ)∆t−1

)
σε∆εet|rt] =

−σ2
ε∆

(1− ρ)2
σ2

ε∆
1−ρ2

σ2
ε∆

+ σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

.

Therefore,

E[∆t|rt] = ρE[∆t−1|rt] + E[σε∆εt|rt] =
−ρ(1− ρ)

σ2
ε∆

1−ρ2 + σ2
ε∆

σ2
ε∆

+ σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

(rt − µ)

=

σ2
ε∆

1+ρ

σ2
ε∆

+ σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

(rt − µ).

The variance conditional on rt is

E[(ρ∆t−1 + σε∆εt)
2|rt] = E[ρ2∆2

t−1 + 2ρ∆t−1σε∆εt + (σε∆εt)
2|rt]
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=
ρ2(σ2

ε∆
+ σ2

r )
σ2

ε∆
1−ρ2 + 2ρ(1− ρ)σ2

ε∆

σ2
ε∆

1−ρ2 +
(

σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

)
σ2

ε∆

σ2
ε∆

+ σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

=
σ2

ε∆

σ2
r+σ2

ε∆
1−ρ2

σ2
ε∆

+ σ2
r + (1− ρ)2

σ2
ε∆

1−ρ2

=
σ2

ε∆
(σ2

r + σ2
ε∆

)
(1− ρ2)(σ2

ε∆
+ σ2

r ) + (1− ρ)2σ2
ε∆

.

Thus,

E
[
Pt+1

Pt
|rt

]
= eµ+ 1

2
(σ2

r+σ2
ε∆

)E[e−(1−ρ)∆t |rt]

= eµ+ 1
2
(σ2

r+σ2
ε∆

)e

− 1−ρ
1+ρ σ2

ε∆
(rt−µ)

σ2
ε∆

+σ2
r+(1−ρ)2

σ2
ε∆

1−ρ2

+ 1
2

(1−ρ)2σ2
ε∆

(σ2
r+σ2

ε∆
)

(1−ρ2)(σ2
ε∆

+σ2
r )+(1−ρ2)σ2

ε∆

= eµ+ 1
2
(σ2

r+σ2
ε∆

)e

1−ρ
1+ρ(µ+1

2 (σ2
r+σ2

ε∆
))σ2

ε∆

σ2
ε∆

+σ2
r+(1−ρ)2

σ2
ε∆

1−ρ2 e

− 1−ρ
1+ρ σ2

ε∆
rt

σ2
ε∆

+σ2
r+(1−ρ)2

σ2
ε∆

1−ρ2 .

Furthermore,

E
[
Dt+1

Pt
|rt

]
= E

[
Vt+1

Vt

]
E

[
Dt+1

Vt+1

]
E

[
e−∆t |rt

]

= eµ+ 1
2
σ2

r e
−x̄v+

(1−ρx)σ2
εx

2(1+ρx) e

(
1

1+ρ µ+ 1
2(1−ρ2)

(σ2
r+σ2

ε∆
)

)
σ2

ε∆

σ2
ε∆

+σ2
r+(1−ρ)2

σ2
ε∆

1−ρ2 e

− 1
1+ρ σ2

ε∆
rt

σ2
ε∆

+σ2
r+(1−ρ)2

σ2
ε∆

1−ρ2 .

The proposition is proved by combining the above two equations.

Proof of Proposition 10

Let ∆̄t,t0 denote the mean of ∆t conditional on prices from time t0 to t, ∆̄t,t0 = E[∆t|{ps}t
t0 ], and σ̄2

t,t0 the

variance of ∆t conditional on prices from time t0 to t, σ̄2
t,t0 = E[(∆t− ∆̄t,t0)

2|{ps}t
t0 ]. If t0 = t, it is the case

considered in Proposition 3. Now consider t0 = t− 1. Using the fact that ∆t is stationary, we can write

pt − pt−1 = vt − vt−1 + ∆t −∆t−1 = µ + σrεrt − (1− ρ)∆t−1 + σε∆εet.

We can re-write the above equation as

pt − pt−1 − µ + (1− ρ)∆̄t−1 = σrεrt − (1− ρ)(∆t−1 − ∆̄t−1) + σε∆εet,

where ∆̄t−1 ≡ ∆̄t−1,t−1. Therefore,

E[−(1− ρ)(∆t − ∆̄t−1)|{ps}t
t−1] =

(1− ρ)2σ̄2
t−1

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

(pt − pt−1 − µ + (1− ρ)∆̄t−1);

E[σε∆εet|{ps}t
t−1] =

σ2
ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

(pt − pt−1 − µ + (1− ρ)∆̄t−1),

where σ̄2
t−1 ≡ σ̄2

t−1,t−1, and

E[(− (1− ρ)(∆t−1 − ∆̄t−1))
2|{ps}t

t−1] =
(1− ρ)2σ̄2

t−1(σ
2
r + σ2

ε∆
)

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

;

E[(σε∆εet)2|{ps}t
t−1] =

σ2
ε∆

(σ2
r + (1− ρ)2σ̄2

t−1)
σ2

r + σ2
ε∆

+ (1− ρ)2σ̄2
t−1

;

E[−(1− ρ)(∆t−1 − ∆̄t−1), σε∆εrt|{ps}t
t−1] =

−(1− ρ)2σ̄2
t−1σ

2
ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

.
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Furthermore,

∆̄t,t−1 = ∆̄t−1 + E[∆t−1 − ∆̄t−1|{ps}t
t−1].

This implies that

∆̄t,t−1 = E[ρ∆t−1 + σε∆εet|{ps}t
t−1] = ρ∆̄t−1 + E[ρ(∆t−1 − ∆̄t−1) + σε∆εet|{ps}t

t−1]

= ρ∆̄t−1 +
−ρ(1− ρ)σ̄2

t−1 + σ2
ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

(pt − pt−1 − µ + (1− ρ)∆̄t−1)

=
σ2

ε∆
− ρ(1− ρ)σ̄2

t−1

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

(pt − pt−1 − µ) +
ρσ2

r + σ2
ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

∆̄t−1

=
σ2

ε∆
− ρ(1− ρ)σ̄2

t−1

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

(pt − pt−1 − µ) +
ρσ2

r + σ2
ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

∆̄t−1.

The variance of ∆t conditional on {ps}t
t−1 is

σ̄2
t,t−1 =

ρ2σ̄2
t−1(σ

2
r + σ2

ε∆
) + σ2

ε∆
(σ2

r + (1− ρ)2σ̄2
t−1) + 2ρ(1− ρ)σ̄2

t−1σ
2
ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

t−1

=
(ρ2σ̄2

t−1 + σ2
ε∆

)σ2
r + σ2

ε∆
σ̄2

t−1

σ2
ε∆

+ σ2
r + (1− ρ)2σ̄2

t−1

.

Iterating this relation, we get

∆̄t,t0 =
t∑

s=t0+1

(
t∏

u=s+1

ρσ2
r + σ2

ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

u−1

)
σ2

ε∆
− ρ(1− ρ)σ̄2

s−1

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

s−1

(ps − ps−1 − µ)

+

(
t∏

u=t0+1

ρσ2
r + σ2

ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

u−1

)
∆̄t0 .

We use the convention that the summation is zero if the lower index of the summation operator Σ is greater

than the upper index and the product is 1 if if the lower index of the product operator Σ is greater than

the upper index. If σ̄2
0 = σ̄2, then σ̄2

t = σ̄2 for all t, with

σ̄2 =

√
σ2

ε∆
+

(1 + ρ)2

4
σ2

r

σr

1− ρ
− 1 + ρ

2(1− ρ)
σ2

r .

The above expression simplifies to

∆̄t,t0 =
t∑

s=t0+1

(
ρσ2

r + σ2
ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

)t−s
σ2

ε∆
− ρ(1− ρ)σ̄2

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

(ps − ps−1 − µ)

+

(
ρσ2

r + σ2
ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

)t−t0

∆̄t0 .

At time t0, the expected noise ∆̄t0 conditional on pt0 is the same as in Proposition 3,

∆̄t0 =

σ2
ε∆

1−ρ2 (pt0 − p̄t0)

σ2
vt0

+
σ2

ε∆
1−ρ2

.

By assumption,
1
σ̄2

=
1

σ2
vt0

+
1− ρ2

σ2
ε∆

,

we can write

∆̄t0 =
σ̄2

σ2
vt0

(pt0 − p̄t0) =
(

1− 1− ρ2

σ2
ε∆

σ̄2

)
(pt0 − p̄t0).
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The dependence on p0 is given by

hp0 = (σ2
ε∆
− ρ(1− ρ)σ̄2)− (ρσ2

r + σ2
ε∆

)
(

1− 1− ρ2

σ2
ε∆

σ̄2

)

= −σ2
ε∆

+ ρ(1− ρ)σ̄2 + ρσ2
r + σ2

ε∆
− ρσ2

r

1− ρ2

σ2
ε∆

σ̄2 − (1− ρ2)σ̄2

= −(1− ρ)σ̄2 + ρσ2
r

(
1− 1− ρ2

σ2
ε∆

σ̄2

)
.

We can prove that the above expression is negative using the definition of σ̄2. Using the notation

hp =
σ2

ε∆
− ρ(1− ρ)σ̄2

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

;

he =
ρσ2

r + σ2
ε∆

σ2
r + σ2

ε∆
+ (1− ρ)2σ̄2

,

we can express ∆̄t,t0 as

∆̄t,t0 =
t∑

s=t0+1

ht−s
e hp(ps − ps−1 − µ) + ht−t0

e ∆̄t0

= −1− ht−t0
e

1− he
hpµ− ht−t0

e

(
1− 1− ρ2

σ2
ε∆

σ̄2

)
p̄t0

+hppt −
t−1∑

s=t0+1

ht−s−1
e (1− he)hpps − ht−t0−1

e hp0pt0 .

Multiple Assets with Factor Structure

We assume that there are N assets where the values are given by

vit = µvi + βiFt + σiε
v
it, i = 1, ..., N.

At time t, the price satisfies

pit = µvi + βiFt + σiε
v
it + βeiFt + σeiε

e
it − ln(E[e∆it ]).

Therefore, there are systematic risks as well as idiosyncratic risks in both the value and the noise. In vector

notation, we can write

pt = p̄t + βFt + σεv
t + βeFt + σε∆ε∆t ,

where σ and σε∆ are N ×N diagonal matrices with diagonal elements being σi and σei respectively, and

p̄t = µv + lnE[e∆t ]). We can write

pt − p̄t = σε∆εv
t + (β + βe)Ft + σεv

t .

In terms of the notation of Lemma 1, θ = σε∆εe
t , θ̄ = 0, A0 = 0, A1 = I (where I is the N -dimensional

identity matrix), B = (σ, β). Therefore,

Σθ = σ2
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and

A1ΣθA
′
1 + BB′ = σ2 + σ2

ε∆
+ (β + βe)(β + βe)′.

Let D = σ2 + σ2
ε∆

and β0 = β + βe, we get

(A1ΣθA
′
1 + BB′)−1 = D−1 −D−1β0(1 + β′0D

−1β0)−1β′0D
−1.

An application of Lemma 1 implies that

∆̄t = ΣθA
′
1(A1Σθ0A

′
1 + BB′)−1ξ

= σ2
ε∆

(
D−1 −D−1β0(1 + β′0D

−1β0)−1β′0D
−1

)
(pt − p̄t)

= σ2
ε∆

(
D−1pt −D−1β0(1 + β′0D

−1β0)−1β′0D
−1(pt − p̄t)

)

= σ2
ε∆

D−1(pt − p̄t)− σ2
ε∆

D−1β0(1 + β′0D
−1β0)−1β′0D

−1(pt − p̄t).

The first term is corresponds to the case of β = 0.

When N → ∞, (1 + β′0D
−1β0)−1 → 0, thus the second term goes to zero, the above formula reduces

to the formula for the case10 of β = 0 ,

∆̄t = σ2
ε∆

D−1(pt − p̄t) = σ2
ε∆

(σ2
ε∆

+ σ2)−1(pt − p̄t).

Intuitively, each stock price is a signal on Ft. When there are infinitely many of stock thus infinitely many

of the signals, the factor uncertainty is eliminated and thus can be ignored for the inference about the

noise ∆t and thus the computation of the expected return conditional on prices and price ratios.

The above formula is also important for calibration exercises. It implies that only the idiosyncratic

volatility σ should be used for computing the expected returns conditional prices and price ratios.

10Note that in Proposition 3, the variance of ∆t is
σ2

ε∆
1−ρ2 and variance of the value is σ2

vt.

34



References

[1] Aboody, David, John Hughes, and Jing Liu, 2002, “Measuring Value Relevance in a (possibly)

Inefficient Market,” Journal of Accounting Research, v40, n4, 965-986.

[2] Ang, Andrew and Jun Liu, 2006, “Risk, Return, and Dividends,” forthcoming, Journal of Financial

Economics.

[3] Arnott, Robert D., 2005a, “What Cost Noise?” Financial Analysts Journal, v61, n2, 10-14.

[4] Arnott, Robert D., 2005b, “Disentangling Size and Value,” Financial Analysts Journal, v61, n5,

12-15.

[5] Arnott, Robert and Jason Hsu, 2006, “Noise, CAPM and the Size and Value Effects”, working paper.

[6] Arnott, Robert D., Jason C. Hsu and Philip Moore, 2005, “Fundamental Indexation,” Financial

Analysts Journal, v61, n2, 83-99.

[7] Banz, Rolf W., 1981, “The Relationship Between Market Value and Return of Common Stocks,”

Journal of Financial Economics, v9, n1, 3-18.

[8] Basu, S., 1977, “ Investment Performance of Common Stocks in Relation to Their Price-Earnings

Ratios: A Test of the Efficient Market Hypothesis”, The Journal of Finance, v32, n3, 663-682.

[9] Berk, Jonathan B., 1995, “A Critique of Size Related Anomalies,” Review of Financial Studies, n8,

275-286.

[10] Berk, Jonathan B., 1997, “Does Size Really Matter?” Financial Analysts Journal, v52, n5, 12-18.

[11] Black, Fischer, 1986, “Noise,”, The Journal of Finance, v41, n3, 529-543.

[12] Black, Fischer and Robert Litterman, 1992, “Global Portfolio Optimization”, Financial Analysts

Journal, September/October, v48, n5, 28-43.

[13] Blume, Marshall E., 1980, “Stock Returns and Dividend Yields: Some More Evidence”, The Review

of Economics and Statistics, v62, n4, 567-577.

[14] Blume, Marshall E., and Robert Stambaugh, 1983, “Biases in Computed Returns”, Journal of Fi-

nancial Economics, v12, n3, 387-404.

[15] Brennan, Michael and Ashley Wang, 2006, “Asset Pricing and Mispricing”, working paper.

[16] Campbell, John Y. and Albert S. Kyle, 1993, “Smart Money, Noise Trading and Stock Price Be-

haviour”, The Review of Economic Studies, v60, n1, 1-34.

35



[17] Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam, 2005, “Evidence on the Speed of

Convergence to Market Efficiency”, Journal of Financial Economics, v76, n2, 271-292.

[18] Daniel, Kent D., David Hirshleifer, and Avanidhar Subrahmanyam, 2001, “Overconfidence, Arbi-

trage, and Equilibrium Asset Pricing”, The Journal of Finance, v56, n3, 921-965.

[19] De Bondt, Werner F. M. and Richard Thaler, 1985, “Does the Stock Market Overreact?” The Journal

of Finance, v40, n3, 793-805.

[20] De Bondt, Werner F. M. and Richard Thaler, 1987, “Further Evidence on Investor Overreaction and

Stock Market Seasonality,” The Journal of Finance, v42, n3, 557-581.

[21] De Long, J. Bradford, Andrei Shleifer, Lawrence H. Summers, and Robert J. Waldmann, 1990, “Noise

Trader Risk in Financial Markets”, The Journal of Political Economy, v98, n4, 703-738.

[22] Fama, Eugene F. and Kenneth R. French, 1988, “Permanent and Temporary Components of Stock

Prices”, Journal of Political Economy, v96, n2, 246-73.

[23] Fama, Eugene F. and Kenneth R. French, 1992, “The Cross-Section of Expected Stock Returns”,

Journal of Finance, v47, n2, 427-465.

[24] French, Kenneth and Richard Roll, 1986, “Stock Return Variances: The Arrival of Information and

the Reaction of Traders”, Journal of Financial Economics, v17, n1, 5-26.

[25] Gomes, Joao, Leonid Kogan, and Lu Zhang, 2003, “Equilibrium Cross Section of Returns”, Journal

of Political Economy, v111, n4, 693-732.

[26] Grossman, Sanford J. and Joseph E. Stiglitz, 1980, “On the Impossibility of Informationally Efficient

Markets”, American Economic Review, v70, n3, 393-408.

[27] Hsu, Jason C., 2006, “Cap-Weighted Portfolios Are Sub-optimal Portfolios,” Journal of Investment

Management, 3rd Quarter.

[28] Hughes, John, Jing Liu, and Jun Liu, 2006, “Information Asymmetry, Diversification, and Cost of

Capital”, UCLA and UCSD working paper.

[29] Jegadeesh, Narasimhan, 1990, “Evidence of Predictable Behavior of Security Returns,” The Journal

of Finance, v45, n3, 881-898.

[30] Jegadeesh, Narasimhan and Sheridan Titman, 1993, “Returns to Buying Winners and Selling Losers:

Implications for Stock Market Efficiency,” The Journal of Finance, v48, n1, 65-91.

[31] Kahneman, D. and A. Tversky, “Intuitive Prediction: Biases and Corrective Procedures,” in D.

Kahneman, P. Slovic an A. Tversky (eds.), Judgment Under Uncertainty: Heuristics and Biases,

London: Cambridge University Press, 1982.

36



[32] Keim, D., 1985 “Dividend Yields and Stock Returns: Implications of Abnormal January Returns”,

Journal of Financial Economics, v14, 473-489.

[33] Lakonishok, Josef, Andrei Shleifer and Robert Vishny, 1994, “Contrarian Investment, Extrapolation,

and Risk ,” The Journal of Finance, v49, n5, 1541-1578.

[34] Liptser, R. S. and Shiryayev, A. N., 1977, Staticsitics of Random Processes II, Berlin: Springer-

Verlag.

[35] Poterba, James M. and Lawrence H. Summers, 1986, “The Persistence of Volatility and Stock Market

Fluctuations,” The American Economic Review, v76, n5, 1142-1151.

[36] Poterba, James M. and Lawrence H. Summers, 1988, “Mean reversion in stock prices: Evidence and

implications,” Journal of Financial Economics, v22, 27-59.

[37] Reinganum, M. R., 1981, “Misspecification of Capital Asset Pricing: Empirical Anomalies Based on

Earnings’ Yields and Market Values,” Journal of Financial Economics, v9, n1, 19-46.

[38] Rosenberg, B., K. Reid, and R. Lanstein, 1985, “Persuasive Evidence of Market Inefficiency,” Journal

of Portfolio Management, v11, 9-17.

[39] Roll, Richard, 1983, “On Computing Mean Return and Small Firm Premium”, Journal of Financial

Economics, v12, 371-386.

[40] Roll, Richard, 1984,“A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient

Market”, Journal of Finance, v39, 1127-1139.

[41] Rozeff, M., 1984, ”Dividend Yields and Equity Risk Premiums,” Journal of Portfolio Management,

v11, 68-75.

[42] Shiller, Robert, 1981, “Do Stock Prices Move Too Much to be Justified by Subsequent Changes in

Dividends?” American Economic Review, v71, 421-36.

[43] Shiller, Robert, 1984, “Stock Prices and Social Dynamics,” Brookings Papers on Economics Activity,

v2, 458-510.

[44] Shiller, Robert, 1989, “Comovements in Stock Prices and Comovements in Dividends”, The Journal

of Finance, v44, n3, 719-729.

[45] Stattman, D., 1980, “Book values and stock returns,” The Chicago MBA: A Journal of Selected

Papers, v4, 25-45.

[46] Summers, Lawrence, 1986, “Does the Stock Market Rationally Reflect Fundamental Values?” The

Journal of Finance, v41, n3, 591-601.

37



[47] Yogo, Motohiro, 2006, “A Consumption-Based Explanation of Expected Stock Returns,” Journal of

Finance, v61, n2, 539-580.

[48] Zhang, Lu, 2005, “The value premium,” Journal of Finance, v60 n1, 67-103.

38


