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1 Introduction

Price momentum can be described as the tendency of securities with relatively high (low)

past returns to subsequently outperform (underperform) the broader market. Long-short

momentum strategies exploit this pattern by taking a long position in past winners and an

offsetting short position in past losers. Momentum strategies have been and continue to be

popular among traders. The majority of quantitative fund managers employ momentum a

component of their overall strategy, and even fundamental managers appear to incorporate

momentum in formulating their trading decisions.1

Notwithstanding their inherent simplicity, momentum strategies have been profitable

across many asset classes and in multiple geographic regions.2 Over our sample period of

1044 months from 1927:01 to 2013:12, our baseline momentum strategy produced monthly

returns with a mean of 1.18% and a standard deviation of 7.94%, generating an annualized

Sharpe ratio of 0.52.3 In contrast, over this same period the three Fama and French (1993)

factor portfolios – Mkt-Rf, SMB, and HML – had annualized Sharpe Ratios of 0.41, 0.26, and

0.39, respectively. The profitability of this momentum strategy after adjusting for exposure

to economy wide systematic risks is still higher: the CAPM alpha is 1.52%/month (t = 7.10),

and the Fama and French (1993) three-factor alpha is 1.76%/month (t = 8.20).4

While the momentum strategy’s average risk adjusted return has been high, the strat-

egy has experienced infrequent but large losses. The historical distribution of momentum

strategy returns is highly left skewed. Consistent with the large estimated negative skew-

ness, over our sample there are eight months in which the momentum strategy has lost more

than 30%, and none in which it has earned more than 30% (the highest monthly return is

26.18%). Moreover, the magnitude of momentum’s largest losses has been extreme. The

1Swaminathan (2010) shows that most quantitative managers make use of momentum. He further esti-
mates that about one-sixth of the assets under management by active portfolio managers in the U.S. large
cap space is managed using quantitative strategies. In addition Jegadeesh and Titman (1993) motivate their
study of price momentum by noting that: “. . . a majority of the mutual funds examined by Grinblatt and
Titman (1989; 1993) show a tendency to buy stocks that have increased in price over the previous quarter.”

2Asness et al. (2013) provide extensive cross-sectional evidence on momentum effects. Chabot et al.
(2014) find the momentum effect in the Victorian era UK equity market.

3Our baseline 12-2 momentum strategy, described in more detail later, ranks firms based on their cumu-
lative returns from months t−12 through t−2, and takes a long position in the value-weighted portfolio of
the stocks in the top decile, and a short position in the value-weighted portfolio of the bottom decile stocks.

4The t-statistics are computed using the heteroskedasticity-consistent covariance estimator by White
(1980).
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worst monthly return was -79.57%, and six monthly losses exceed 40%. normality can be

easily rejected. Also, as Daniel and Moskowitz (2015) document, these large losses clus-

ter, and tend to occur when the market rebounds sharply following a prolonged depressed

condition.

The focus of this paper is modeling time variation in the tail risk of momentum strategies.

We argue that the way momentum strategy portfolios are constructed necessarily embeds a

written call option on the market portfolio, with time varying moneyness. The intuition here

follows Merton (1974): following large negative market returns the effective leverage of the

firms on the short side of the momentum strategy (the past-loser firms) becomes extreme.

As the firm value falls, the common shares of these firms become at- or out-of-the-money

call options on the firm’s underlying assets, and start to exhibit the convex payoff structure

associated with call options: the equity value changes little in response to even large down

moves in the underlying firm value, but moves up dramatically in response to large up moves.

Thus, when the values of the firms in the loser portfolio increase—proxied by positive returns

on the market portfolio—the convexity in the option payoff results in outsized gains in the

past loser portfolio. Since the momentum portfolio is short these loser firms, this results in

the dramatic losses for the overall long-short momentum portfolio.

We show that the dynamics of reported financial leverage are consistent with this hy-

pothesis: going into the five worst momentum crash months, financial leverage of the loser

portfolio averaged 47.2, more than an order of magnitude higher than unconditional average

of 3.97.5 Of course, a firm’s financial leverage is not a good proxy for that firm’s effective

leverage: firms have many fixed costs distinct from the repayment of their debt, including

the wages of crucial employees, the fixed costs associated with maintenance of property,

plant and equipment, etc. If these fixed costs are large, even a firm with zero debt may see

its equity start to behave like an out-of-the-money option following large losses. One recent

episode consistent with this was the collapse of many “dot-com” firms in the 2000-2002 pe-

riod, where large drops in the values of these firms did not lead to large increases in financial

leverage, yet clearly affected the operating leverage of these firms.

Because it is difficult to directly measure the effective leverage—operating plus financial—

of the firms that make up the short-side of the momentum portfolio, we instead estimate

5These are the averages over the 1964-2013 period over which we have data on the book value of debt.
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the leverage dynamics of the momentum portfolio using hidden Markov model that incor-

porates this optionality. In the model, we assume that the economy can be viewed as being

in one of just two unobserved states, calm and turbulent. We develop a two-state hidden

Markov model (HMM) where the momentum return generating process is different across

the two states, and estimate the probability that the economy is in the unobserved turbulent

state using maximum likelihood. One striking finding is that, while the momentum returns

themselves are highly left-skewed and leptokurtic, the residuals of the momentum return

generating process coming out of our estimated HMM specification are approximately nor-

mally distributed.6 A key component of the HMM specification is the embedded option on

the market; by looking for periods in time where the optionality is stronger, we can better

estimate whether a momentum “tail event” is more likely. Consistent with this, we find

that the HMM-based estimate of the turbulent state probability forecasts large momentum

strategy losses far better than alternative explanatory variables such as past market and

past momentum returns and their realized volatilities or volatility forecasts from GARCH

models.

Interestingly, we find that it is the incorporation of the optionality in the HMM that

is key to the model’s ability to forecast these tail events. A version of the HMM which

incorporates all other model components (i.e., the volatilities and mean returns of the both

the market and the momentum portfolios), but which does not include the optionality, is not

as successful: the model without the optionality produces about 20% more false positives

than the baseline HMM specification, suggesting that the historical convexity in the relation

between the market and momentum portfolio allows better estimation of the turbulent state

probability. Intuitively, increasing leverage in the past loser portfolio, identified by the HMM

as an increase in the convexity of the momentum strategy returns, presages future momentum

crashes.

The literature examining price momentum is vast. While the focus in this literature has

been on documenting and explaining the strategy’s high average returns7 and unconditional

6Interesting the market-returns residuals have a Student-t distribution with 5 degrees of freedom. We
account for this non-normality in one our HMM specifications and show that accounting for this non-
normality substantially improves the performance of the model in forecasting tail-events.

7 See Daniel et al. (1998), Barberis et al. (1998), Hong and Stein (1999) and Liu and Zhang (2008) for
examples.
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risk exposures, a more recent literature has focused on characterizing the time variation in the

moments. Barroso and Santa-Clara (2015) study the time-varying volatility in momentum

strategy returns. Daniel and Moskowitz (2015) find that infrequent large losses to momentum

strategy returns are pervasive phenomena — they are present in several international equity

markets and commodity markets — and they tend to occur when markets recover sharply

from prolonged depressed conditions. Grundy and Martin (2001) examine the time-varying

nature of momentum strategy’s exposure to standard systematic risk factors. In contrast

to most of this literature, our focus here is on the strategy’s tail risk. In particular, we

show how this tail risk arises, model it with our HMM, estimate this model and show that

it captures these important tail risks better than other forecasting techniques suggested by

the literature.

Our findings also contribute to the literature characterizing hidden risks in dynamic

portfolio strategies and the literature on systemic risk. For example, Mitchell and Pulvino

(2001) find that merger arbitrage strategy returns have little volatility and are market neutral

during most times. However the strategies effectively embed a written put option on the

market, and consequently tend to incur large losses when the market depreciates sharply.

When a number of investors follow dynamic strategies that have embedded options on the

market of the same type, crashes can be exacerbated with the potential to trigger systemic

responses.

While our focus is in modeling systematic stochastic variations in the tail risk of momen-

tum returns—which we find is due to its embedded option on the market like features—our

findings also have implications for estimating the abnormal returns to the momentum strat-

egy. It is well recognized in the literature that payoffs on self financing zero cost portfolios

that have positions in options can exhibit spurious positive value (alpha) when alpha is

computed using the market model or linear beta models in general.8 We therefore calcu-

late an option-adjusted abnormal performance for the momentum strategy. As might be

anticipated, we find that alpha of the momentum strategy is generally strongly positive and

statistically significant. However, when the ex-ante turbulent state probability is sufficiently

high—and there are several historical episodes where it is—the estimated alpha is negative

and statistically significant.

8 See Glosten and Jagannathan (1994) for an example.
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The rest of this paper is organized as follows. In Section 2, we examine the various

drivers of momentum crashes, and show that these arise as a result of the strong written call

option-like feature embedded in momentum strategy returns in certain market conditions. In

Section 3, we describe a hidden Markov model for momentum return generating process that

captures this feature of tail risk in momentum strategy returns. In Section 4, we show the

ability of our hidden Markov model to predict momentum crashes. In Section 5, we evaluate

the conditional alpha of momentum strategy returns based on the estimated parameters of

our hidden Markov model and option market prices. Section 6 concludes.

2 Momentum Crashes

In this section, we describe the return on a particular momentum strategy that we examine

in detail in this paper. We show that the distribution of momentum strategy returns is

heavily skewed to the left and significantly leptokurtic. We also find that the return on the

momentum strategy is non-linearly related to the excess return of market index portfolio.

The nature of non-linear relationship depends on market conditions. This examination

motivates the two-state model that we develop in Section 3.

2.1 Characteristics of Momentum Strategy Returns

Price momentum strategies have been constructed using variety of metrics. For this study

we examine a cross-sectional equity strategy in US common stocks. Our universe consists

of all US common stocks in CRSP with sharecodes of 10 and 11 which are traded on the

NYSE, AMEX or NASDAQ. We divide this universe into decile portfolios at the beginning

of each month t based on each stock’s “(12,2)” return: the cumulative return over the 11

month period from months t−12 through t−2.9 Our decile portfolio returns are the market-

capitalization weighted returns of the stocks in that past return decile. A stock is classified

as a “winner” if its (12-2) return would place it in the top 10% of all NYSE stocks, and as

a “loser” if its (12-2) return is in the bottom 10%. Most of our analysis will concentrate on

9The one month gap between the return measurement period and the portfolio formation date is done
both to be consistent with the momentum literature, and to minimize market microstructure effects and to
avoid the short-horizon reversal effects documented in Jegadeesh (1990) and Lehmann (1990).
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the zero-investment portfolio “MOM” which is long the past-winner decile, and short the

past-loser decile.

Panel A of Table 1 provides various statistics describing the empirical distribution of the

momentum strategy return (MOM) and the three Fama and French (1993) factors.10 With-

out risk adjustment the momentum strategy earns an average return of 1.18%/month and an

impressive annualized Sharpe Ratio of 0.52. Panels B and C show that after risk adjustment,

the average momentum strategy return increases: its CAPM alpha is 1.52%/month (t=7.10)

and its Fama and French (1993) three factor model alpha is 1.76%/month (t=8.20).11 This

is not surprising given the negative unconditional exposure of MOM to the three factors.

The focus of our study is the large, asymmetric losses of the momentum strategy: Panel

A of Table 1 shows that the MOM returns are highly left-skewed and leptokurtic. Figure 1.A

illustrates this graphically: we plot the smoothed empirical density for MOM returns (the

dashed red line) and a normal density with the same mean and standard deviation. Overlayed

on the density function plot are red dots that represent the 25 MOM returns that exceed

20% in absolute value (13 in the left tail and 12 in the right tail). Figure 1.B overlays the

empirical density market excess returns which are scaled to match the volatility of MOM

returns over this sample period. The 20 Mkt-Rf∗ returns that exceed 20% in absolute value

(11 in the left tail and 9 in the right tail) are represented by blue dots.

Consistent with the results in Table 1, Figure 1 reveals that both the market and momen-

tum strategy are leptokurtic. However, Panel B in particular shows the strong left skewness

of momentum. Again, one of the objectives of this paper is to show that this skewness is

completely a result of the time-varying non-linear relationship between market and momen-

tum returns that is a result of the time-varying leverage of the firms in the loser portfolio.

As a way of motivating our model, we next examine the influence of prevailing various state

variables on market conditions on momentum strategy returns.

To begin, Table 2 lays out the MOM returns in the 13 months when the MOM loss

exceeded 20%, and measures of various market conditions that prevailed during the months.

The first set of columns show that the large momentum strategy losses are generally asso-

10 We obtain the data of the three factors in Fama and French (1993) model of Mkt-Rf, SMB and HML
from Kenneth French’s database.

11 The t-statistics are computed using the heteroskedasticity-consistent covariance estimator by White
(1980).
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ciated with to large gains on the past-loser portfolio rather than losses in the past-winner

portfolio. During the 13 large loss months, the loser portfolio earned an excess return 45.69%

whereas the winner portfolio earned only by 6.32%. Interestingly, these loser portfolio gains

are associated with large contemporaneous gains in the market portfolio, which earns an

average excess return of 16.14% in these months. However, the table also shows that market

return is strongly negative and volatile in the period leading up to the momentum crashes:

the market is down, on average, by more than 37% in the three years leading up to these

crashes, and the market volatility is almost three times its normal level in the year leading

up to the crash.12 Given the past losses high volatility of the market, it is not surprising that

the past-loser portfolio has suffered severe losses: the threshold (breakpoint) for a stock to

be in the loser portfolio averaged -63.77% in these 13 months, about 2.7 times the average

breakpoint. Thus, at the start of the crash months are likely very highly levered. Table 2

also shows that the average financial leverage (book value of debt/market value of equity),

during the 5 loss months after 1964 (when our leverage data starts) is 47.2, more than an

order of magnitude higher than the average leverage of the loser portfolio of 3.97.

To summarize, large momentum strategy losses generally occur have occurred in volatile

bear markets, when the past-losers have lost a substantial fraction of their market value,

and consequently have high financial leverage, and probably high operating leverage as well.

Thus, following Merton (1974), the equity of these firms are likely to behave like out-of-the-

money call options on the underlying firm values which, in aggregate, are correlated with

the market. Consequently when the market recovers sharply, the loser portfolio experiences

outsized gains, resulting in the extreme momentum strategy losses we observe.

2.2 Time Varying Option-like Features of Momentum Strategy

Motivated by the evidence in the preceding Section, we here examine the time-variation in

the call-option-like feature of momentum strategy returns. This serves as motivation for the

two-state HMM model that we will develop in Section 3.

In particular, we consider the following augmented market model return generating pro-

12 Realized volatility is computed as the square root of the sum of squared daily returns and expressed as
annualized percentage.
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cess, similar to that considered by Henriksson and Merton (1981) and others.13

Re
p,t = αp + β0

pR
e
MKT,t + β+

p max
(
Re

MKT,t, 0
)

+ εp,t, (1)

where Re
MKT,t is the market portfolio returns in excess of risk free return for month t. We note

that α, the intercept of the regression, is no longer a measure of the strategy’s abnormal

return, because the option payoff—max(Re
MKT,t, 0)—is not an excess return (Glosten and

Jagannathan, 1994). We return to this issue and estimate the abnormal return of the strategy

in Section 5. For the moment, we concentrate on the time-variation in β+, which is a measure

of the exposure of the portfolio p to the payoff on a one-month call option on the stock market

or, equivalently, a measure of the convexity in the relationship between the market return

and the momentum strategy return.

To examine this time-variation, we partition the months in our sample into three groups

on the basis of three state variables: the cumulative market return during the 36 month

preceding the portfolio formation month; the realized volatility of daily market returns over

the previous 12 months; and the breakpoints of the loser portfolio – i.e., the return over the

(12,2) measurement period of the stock at the 10th percentile. Based on each of these state

variables, we partition our sample of 1044 months into ‘High’, ‘Medium’ and ‘Low’ groups.

The High (Low) group is the set of months when the state variable is in the top (bottom)

20th percentile at the start of that month. The ‘Medium’ group contains the remaining

months (i.e., the middle 60%). We present the results from sorting on the basis of the past

36-month market return in Table 3; the results from sorting on the other two state variables

are presented in Table C.5 in the Online Appendix.14

13 To our knowledge, Chan (1988) and DeBondt and Thaler (1987) first document that the market beta
of a long-short winner-minus-loser portfolio is non-linearly related to the market return, though they do
their analysis on the returns of longer-term winners and losers as opposed to the shorter-term winners and
losers we examine here. Rouwenhorst (1998) demonstrates the same non-linearity is present for long-short
momentum portfolio returns in non-US markets. Daniel and Moskowitz (2015) show that the optionality is
time varying, and is particularly pronounced in high volatility down markets, and is driven by the behavior
of the short-side (loser) as opposed to the long (winner) side of their momentum portfolio. Moreover, Boguth
et al. (2011), building on the results of Jagannathan and Korajczyk (1986) and Glosten and Jagannathan
(1994), note that the interpretation of the measures of abnormal performance in Chan (1988), Grundy and
Martin (2001) and Rouwenhorst (1998) needs for caution.

14Results are similar when we group sample with other market conditions – cumulative market return
during the 12 month preceding the portfolio formation month, the realized volatility of daily market returns
over the previous 6 months and the ratio of the book value of debt to the market value of equity (BD/MV)
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Panel A presents the estimates of equation (1) for the momentum strategy returns

(RMOM), and for the returns of the winner and loser portfolio in excess of the risk free

rate (Re
WIN and Re

LOS). First, note that the estimated β+, the exposure to the market call

payoff is significant only when the the past 36-month market returns are in ‘Low’ group:

consistent with the leverage hypothesis, the the past-loser has a positive exposure to the

market option payoff of 0.72 (t=3.60). That is, it behaves like a call option on the market.

The MOM portfolio, which is short the past-losers, thus has a a significantly negative β+..15

In contrast, in the ‘Medium’ and ‘High’ group, β+ of the MOM returns and of the long- and

short-sides are smaller in absolute value and are not statistically significantly negative.16

Interestingly the Low State, the Adj.R2 is 48% for MOM returns, as compared to 6% in

both the ‘Medium’ and ‘High’ states, a result of both the higher β0 and β+ in the Low state.

Panel C shows that large MOM losses (crashes) are clustered in months when the option-

like feature of β+ is accentuated; 11 out of 13 momentum losses occur during months in the

‘Low’ group. Table C.5 shows that the results when the grouping is on other state variables:

i.e., realized volatility of market over the past 12 months or return breakpoints for stocks to

enter the loser portfolio.

The evidence in Panel D suggests that the large negative skewness of the momentum

strategy return distribution is mostly due to the embedded written call option on the market.

In the ‘Low’ group of Panel A, the skewness of the momentum strategy returns is -2.33, but

after we control for the non-linear exposure to the market through equation (1), the skewness

of residual drops to -0.48. In ‘Medium’ and ‘High’ group, the negative skewness of momentum

strategy returns is not that strong and it is not significantly reduced after controlling for

the embedded written call option on the market. This is consistent with the results in

Panel A; β+ is not significantly different from zero in the other two groups. The results

reported in Table C.5 are consistent with the results presented here: the large negative skew

in momentum returns is due to the embedded written call option that gets accentuated by

market conditions.

of the loser stock portfolio.
15 The t-statistics are computed using the heteroskedasticity-consistent covariance estimator by White

(1980).
16 We note that β+ of winner and loser portfolios exhibit interesting patterns: It is negative and significant

for winner stocks in ‘Low’ group. It is negative and statistically significant for loser stocks in the ‘High’ group.
Understanding why we see these patterns is left for future research.
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The above results suggest that the embedded written call option on the market is the

key driver of momentum crashes, and that this optionality is a result of the high leverage

of the past-loser firms. However this leverage will not always be apparent in the financial

leverage of the past-loser portfolio. For example, it is likely that the operating leverage

of many of the firms that earned low returns in the post-March 2000 collapse of the tech

sector was quite high, even though these firms’ financial leverage was insignificant. The

evidence is consistent with this: the financial leverage of the loser portfolio was low during

two episodes of large momentum losses in 2001:01 and 2002:12.17 However, as can be seen

from Table 4, the optionality is large when we estimate the augmented market model return

generating process for momentum returns given by equation (1) for the 36 monthly returns

from 2000:01-2002:12—although it is not statistically significant due to the small sample

size.

In the next section, we model the option-like relation between the market and the mo-

mentum portfolio, with the goal of employing this model to forecast momentum crashes. The

evidence above suggests that a model based on Merton (1974), using debt and equity values

would not capture these periods. Alternatively, we could form a model with a functional

form relating the state-variables explored above (past-market returns, market volatility, etc.)

and the convexity. However, this requires choosing the length of the time window over which

these state-variables are measured, and that necessarily has to be rather arbitrary. Given

these difficulties, we instead posit a two-state model, with “calm” and “turbulent” states.

when the economy is in the turbulent state the option like feature of momentum return is ac-

centuated, and momentum crashes are likely. This naturally leads us to the two-state hidden

Markov model (HMM) for estimating this state, which we explore in the next Section.

3 Model

In this section we develop a two-state hidden Markov model (HMM) in which a single state

variable summarizes the market conditions. the “turbulent” state is characterized by higher

return volatilities and by more convexity in the market-momentum return relationship. We

17 Refer to Table 2. In 2001:01 (2002:12), the momentum strategy loses -41.97% (-20.40%) and the financial
leverage (BD/MV) of loser portfolio was 0.68 (2.32). The average of financial leverage over all available data
from 1964 is 3.97.
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then show that an estimated HMM allows ex-ante estimation of this this state variable based

on the history of returns on the momentum strategy and the market portfolio.

3.1 A Hidden Markov Model of Market and Momentum Returns

Let St denote the unobserved underlying state of the economy at time t, which is either

“calm” (C) or “turbulent” (T ) in our setting. Our specification for return generating process

of the momentum strategy is as follows:

RMOM,t = α(St) + β0(St)R
e
MKT,t + β+(St) max

(
Re

MKT,t, 0
)

+ σMOM(St) εMOM,t, (2)

where εMOM,t ∼ i.i.d N (0, 1). Equation (2) is similar to equation (1). However, the option-

like feature, β+(St), the sensitivity of momentum strategy return to the market return,

β0(St), and the volatility of momentum specific shock, σMOM(St), all differ across the un-

observed turbulent and calm states of the economy. We also let the intercept, α(St), vary

across the two hidden states of the economy. We assume that the return generating process

of the market returns in excess of risk free rate is given by:

Re
MKT,t = µ (St) + σMKT (St) εMKT,t, (3)

where εMKT,t ∼ i.i.d N (0, 1). That is, µ (St) and σMKT (St) represent the state dependent

mean and volatility of the market excess return.

Finally, we assume that the transition of the economy from one hidden state to another

is Markovian, with the transition probability matrix as given below:

Π =

 Pr(St = C|St−1 = C) Pr(St = T |St−1 = C)

Pr(St = C|St−1 = T ) Pr(St = T |St−1 = T )

 , (4)

where St, the unobservable random state at time t which, in our setting, is either Calm(C)

or Turbulent(T ) and Pr (St = st|St−1 = st−1) denotes the probability of transitioning from

state st−1 at time t−1 to state st at time t.18

18Here, we use Pr(x) to denote the probability mass of the event x when x is discrete, and the probability
density of x when x is continuous.
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3.2 Quasi Maximum Likelihood Estimation

We now estimate the set of parameters of the hidden Markov model in equations (2), (3),

and (4), which we summarize with the 14-element parameter vector θ0:

θ0 =


α (C) , β0 (C) , β+ (C) , σMOM (C) ,

α (T ) , β0 (T ) , β+ (T ) , σMOM (T ) ,

µ (C) , σMKT (C) , µ (T ) , σMKT (T ) ,

Pr (St = C|St = C) ,Pr (St = T|St = T)


. (5)

The observable variables are the time series of excess returns on the momentum portfolio

and on the market, which we summarize in the vector Rt:

Rt =
(
RMOM,t, R

e
MKT,t

)′
.

We let rt denote the realized value of Rt.

We follow Hamilton (1989) and estimate the HMM parameters by maximizing the log

likelihood of the sample under the assumption that εMOM,t and εMKT,t in (2) and (3) are

jointly normally distributed. When εMOM,t and εMKT,t are not normally distributed, the

resulting estimator is referred to as QML (Quasi Maximum Likelihood). As we discuss in

Appendix A, when this assumption is violated, the QML estimator of θ0 can be inconsistent.19

As we discuss later in more detail, while the momentum returns RMOM,t are highly skewed

and leptokurtic, the momentum return residuals (εMOM,t) appears normally distributed. In-

terestingly, the market return residual is non-normal—it is better characterized as Student-t

distributed with (d.f.=5)–but we show in Appendix A that given these distribution for the

residuals, the QML estimator provides reasonably well behaved estimates.

Let θ̂QML denote the vector of HMM parameters that maximizes the log likelihood func-

tion of the sample given by:

L =
T∑
t=1

log (Pr (rt|Ft−1)) , (6)

where Ft−1 denotes the agent’s time t−1 information set (i.e. all market and momentum

19In contrast to what it sometimes assumed in the literature, QML in this setting is not consistent. See
especially Appendix A.1, where we demonstrate this result.
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excess returns up through time t−1).

Given the hidden-state process that governs returns, the time t element of this equation–

the likelihood of observing rt—is:

Pr (rt|Ft−1) =
∑

st∈{C,T}

Pr (rt, St = st|Ft−1) , (7)

where the summation is over the two possible values of the unobservable state variable St.

The joint likelihood inside the summation can be written as:

Pr (rt, St = st|Ft−1) = Pr (rt|St = st,Ft−1) Pr (St = st|Ft−1)

= Pr (rt|St = st) Pr (St = st|Ft−1) . (8)

The first term of equation (8) is the state dependent likelihood of rt which, under the

distributional assumptions from (2) and (3), is given by

Pr (rt|St = st) =
1√

2πσMOM (st)
exp

{
−(εMOM,t)

2

2

}
× 1√

2πσMKT (st)
exp

{
−(εMKT,t)

2

2

}
,

where

εMOM,t =
1

σMOM (st)

(
rMOM,t − α (st)− β0 (st) r

e
MKT,t − β+ (st) max

(
reMKT,t, 0

))
εMKT,t =

1

σMKT (st)

(
reMKT,t − µ (st)

)
.

The second term of equation (8)—the likelihood that the unobserved state St is st ∈ {C, T}
conditional on Ft−1—can be written as a function of the time t−1 state probabilities as:

Pr (St = st|Ft−1) =
∑

st−1∈{C,T}

Pr (St = st, St−1 = st−1|Ft−1)

=
∑

st−1∈{C,T}

Pr (St = st|St−1 = st−1,Ft−1) Pr (St−1 = st−1|Ft−1)

=
∑

st−1∈{C,T}

Pr (St = st|St−1 = st−1) Pr (St−1 = st−1|Ft−1) , (9)
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where third equality holds since the transition probabilities depend only on the hidden state.

We can compute the expression on the left hand side of equation (9) using the elements of

the transition matrix, Pr (St = st|St−1 = st−1). The right hand side of equation (9)—the

conditional state probability Pr (St−1 = st−1|Ft−1)—comes from Bayes’ rule:

Pr (St = st|Ft) = Pr (St = st|rt,Ft−1)

=
Pr (rt, St = st|Ft−1)

Pr (rt|Ft−1)
. (10)

where the numerator and denominator of equation (10) come from equations (8) and (7),

respectively.

Thus, given time 0 state probabilities, we can calculate the conditional state probabilities

for all t ∈ {1, 2, · · · , T}. In our estimation, we set Pr (S0 = s0|F0) to their corresponding

steady state values implied by the transition matrix.20 Table 5 gives the Quasi Maximum

Likelihood parameter estimates and standard errors of the hidden Markov model parameter

vector in equation (5).21

The parameters in Table 5 suggest that HMM does a good job of picking out two distinct

states: Notice that β+, while still negative in the calm state, is more than twice as large

in the turbulent state. Similarly The estimated momentum and market return volatilities,

σMOM(St) and σMKT(St), are more than twice as large in the turbulent state. We see also that

the calm state is more persistent than the turbulent, at least based on the point estimates.

An implication of the large β+(T ) is that MOM’s response to up moves in the market is

considerably more negative than the response to down-moves in the market. In the turbulent

state, MOM’s up market beta is -1.45 (=-0.20-1.25), but its down market beta is only -0.25.

The combination of this with the higher volatilities means that the left tail risk is high when

the hidden state is turbulent.

One question the reader might have at this point is whether these parameters estimates

(and the associated standard errors) are reliable, particularly given the highly-non-normal

20The vector of steady state probabilities is given by the eigenvector of the transition matrix given in
equation (4).

21We use standard Quasi Maximum Likelihood standard errors for inference. While the consistency of
the parameter estimates we obtain depend on the conditional normality assumption, as verified in Appendix
A.1, in the following subsection we show that biases due to deviations from normality are small.
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momentum returns distribution. We explore this question in Appendix A. As noted ear-

lier, despite the extreme skewness of the RMOM,t, the momentum residuals return (εMOM,t)

appears normally distributed. All of the skewness in the MOM return arises as a result

of the optionality on the market. While the conditional market return residual remains

non-normal–it is better characterized as Student-t distributed with (d.f.=5)–we show in

Appendix A that given these distribution for the residuals, the QML estimator provides

reasonably well behaved estimates.

We now examine the extent to which the estimated state probability can forecast the

momentum tail-events or “crashes” we see in the return data.

4 Predicting Momentum Crashes using the HMM

In this section, we examine the predictability of momentum crashes based on the esti-

mated probability of the economy being in the hidden turbulent state in a given month,

Pr (St = T|Ft−1). It is evident from Table 5 that when the hidden state is turbulent, the

written call option-like features of momentum strategy returns become accentuated, and

in addition both the momentum strategy and market excess returns become more volatile.

Hence, we should expect that the frequency with which extreme momentum strategy losses

occur should increase with Pr (St = T|Ft−1).
Figure 2 presents scatter plots of realized momentum strategy returns on the vertical

axis against Pr (St = T|Ft−1), the estimated probability that the hidden state is turbulent,

on the horizontal axis. Momentum strategy losses exceeding 20% are in red and momentum

strategy gains exceeding 20% are in green. Panel A is based on in-sample estimates using

all 1044 months of data during 1927:01-2013:12. Consistent with results in the preceding

section, the large losses, highlighted in red, occur only when the estimated turbulent state

probability is high. The large gains (the green dots) are fairly evenly distributed across the

different state probabilities.

The analysis reflected in Panel A in in-sample, meaning that the full-sample parameters

(i.e., those presented in Table 5) are used to estimated the state probability at each point

in time. In Panel B, the turbulent state probability is estimated fully out-of-sample; the pa-

rameters are estimated by the same QML procedure, but only up through the month prior
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to portfolio formation. Here the sample is 1980:09-2013:12, giving us a sufficiently large

period over which to estimate the parameters. To further challenge the HMM estimation,

we estimate the HMM parameters using only from the slightly less volatile period following

1937:01.22 In Panel B, just as in Panel A, there is again strong association between momen-

tum crashes worse than -20% (red dots) and high values of the (out-of-sample) estimated

turbulent state probability. In contrast, large momentum gains more than 20% (green dots)

are dispersed more evenly across high and low values of the estimated state probability.

Table 7 presents the number of large negative and large positive momentum strategy re-

turns during months when Pr (St = T|Ft−1) is above a certain threshold. Notice that all thir-

teen momentum crashes, defined as losses exceeding 20%, happen when the Pr (St = T|Ft−1)
is more than 60%. However, only eight out of twelve momentum gains exceeding 20% are

found when the Pr (St = T|Ft−1) is more than 60%, and three out of those large gains happen

when the Pr (St = T|Ft−1) is less than 10%.

We examine the extent to which our tail risk measure succinctly summarizes the infor-

mation about the likelihood of large momentum strategy losses using the following probit

and logit models:

Pr (RMOM,t < Threshold) = F (a+ b′Xt−1), (11)

where the functional form of F depends on whether we use the probit or the logit model.23

For the predictors of Xt−1, we use our tail risk measure as well as the market return during

the preceding 36 months, the realized volatility of daily market return during the preceding

12 months, the interaction of preceding market return and preceding market return volatility,

and financial leverage (BD/ME) of the loser portfolio – variables that characterize market

conditions when large losses in momentum strategy returns end to occur, (see Tables 2 and

3). We report results in Table 8 with Threshold=-10%.24 Panel A reports the results for

the longer sample, 1929:07-2013:12.25 The i′th entry of the coefficient vector b represents

22We can confirm that the parameter estimates converge more quickly if we start our parameter estimation
with the return data beginning in 1927.

23 For the probit model, we use the CDF of the standard normal distribution as F (x). For the logit model,

we use the logistic function: F (x) = exp(x)
1+exp(x) .

24If we lower the threshold below -10%, no single variable appears to be significant due to the rare
occurrence of the events of RMOM,t < Threshold . For the purpose of comparison across variables, we use
-10% as Threshold.

25Since we use the past market returns over the previous 36 months, the sample period becomes shorter.
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the coefficient corresponding to i′th predictor variable. We arrange the predictor variables in

the following sequence: our tail risk measure Pr (St = T|Ft−1) as the first variable; market

return during the preceding 36 months when as the second variable; realized volatility of daily

market return during the preceding 12 months as the third variable; product of second and

third variables as the fourth variable; and financial leverage (BD/ME) of the loser portfolio

as the fifth variable. Let t(bi) denote the t-statistic associated with the coefficient bi. All the

variables are significant when used individually. When we use all variables in the estimation,

only our tail risk measure remains to be statistically significant. We find similar results in

Panel B using the shorter sample, 1964:01-2013:12 when financial leverage (BD/ME) of the

loser portfolio is available.

Most quantitative fund managers operate with mandates that impose limits on their

portfolios’ return-volatilities. Barroso and Santa-Clara (2015) demonstrate the benefit of

such mandates: when exposure to the momentum strategy is varied over time to keep its

volatility constant the Sharpe ratio significantly improves. A natural question that arises is

whether managing the volatility of the portfolio to be within a targeted range is the best way

to manage the portfolio’s exposure to left tail risk. As we saw before, left tail risk is related

to left skewness of returns, and there are no a priori reasons to believe that changes in left

skewness move in lock step with changes in the volatility of momentum strategy returns.

We therefore let the data speak, by comparing the performance of two tail risk measures:

the volatility of momentum strategy returns (measured either by realized volatility or by

GARCH) and the probability of the economy being in a turbulent state computed based on

the estimated HMM parameters in predicting momentum crashes.

Table 9 compares the number of false positives in predicting momentum crashes across

different tail risk measures. The number of false positives of a given tail risk measure is

computed as follows. Suppose we classify months in which momentum strategy returns

lost more than a threshold X. Let Y denote the lowest value attained by a given tail risk

measure during those momentum crash months. For example, consider all months during

which momentum strategy lost more than 20% (X=20%). Among those months, the lowest

value, attained by the tail risk measure of Pr (St = T|Ft−1), is 67% (Y=67%). During months

when the tail risk measure is above the threshold level of Y , we count the number of months

when momentum crashes did not occur and we denote it as the number of false positives.
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Clearly, the tail risk measure that has the least number of false positives is preferable. Table

9 gives the number of false positives for different tail risk measures and different values of

threshold X=10%, 20%, 30%, 40%.

In Panel A, we use Pr (St = T|Ft−1) as a tail risk measure. The results in Panel A-1 are

from our original HMM model specified in (2), (3) and (4). To emphasize the importance

of option-like feature β+(St) in (2), we impose the restriction β+(St) = 0 and report the

associated results in Panel A-2. Also, motivated by the findings reported in Appendix B, we

extend our HMM model to the hybrid case where residuals for momentum strategy returns,

εMOM,t, are drawn from normal distribution and residuals for market excess returns, εMKT,t,

are drawn from Student-t (d.f.=5) distribution. Results of which are reported in Panel A-3.

In Panel B, we use various estimates of the volatility of momentum strategy returns as

tail risk measures. Specifically, we estimate the volatility of the momentum strategy returns

using GARCH (1,1), and realized volatility of daily momentum strategy returns over the

previous 3, 6, 12, and 36 months. In Panel C, we use the volatility of the market return

estimated using GARCH(1,1) and realized volatility of the daily market return during the

preceding 3, 6, 12, and 36 months as tail risk measures. In Panel D, we use the market

return during the preceding 3, 6, 12 and 36 month windows as tail risk measures.

When X=20%, we find that the number of false positives in Panel A-1 is always smaller

than other cases in Panel B, C and D. For example, in our 1930:01-2013:12 sample,26 we

find 137 false positives when we use the tail risk measure based on our main specification

of HMM. In contrast, if we use the realized volatility of daily momentum strategy returns

over the previous six months,27 the number of false positives increases to 187 months. The

result of Panel A-2 shows that the necessity of the option features in our HMM specification.

If we impose that β+(St) = 0 while estimating our HMM model, the performance becomes

worse. The number false positives increases from 137 to 164. When we relax the restriction

that the residuals in momentum strategy returns and market excess returns are drawn from

identical distribution and impose that εMOM,t is drawn from normal distribution and εMKT,t

is drawn from Student-t (d.f.=5) distribution, the number of false positives declines sharply

26Since we utilize momentum returns over the previous 36 months to construct risk measures, the sample
period becomes shorter.

27Barroso and Santa-Clara (2015) used this measure to imposing the volatility target of the momentum
strategy.
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from 137 to 114 as reported in Panel A-3.

This establishes the link between the tail risk of momentum strategy returns and the

probability of the economy being in the hidden turbulent state. In the next section we

examine how the alpha of the momentum strategy return varies over time, as the probability

of the economy being in the turbulent state changes.

5 The Momentum Strategy’s Option Adjusted Alpha

We have shown that the two-state HMM effectively picks out changes in the market envi-

ronment that lead to dramatic shifts in the distribution of market and momentum returns.

Moreover, even when estimated out-of-sample, the HMM does a far more effective job of

forecasting momentum tail events or “crashes” than alternative methods.

These results raise the question of how the alpha of the momentum strategy varies over

time with changes in market conditions. While not the focus of our paper, in this section

we briefly examine this question, based on the estimated HMM model from Section 3. We

calculate the alpha from the perspective of an investor who can freely invest in the risk

free asset, the market index portfolio, and in at-the-money call options on the market index

portfolio without any frictions, but whose pricing kernel is otherwise uncorrelated with inno-

vations in the momentum strategy. Given this assumption our valuation requires the prices

of traded options on the market portfolio, which we proxy with one month, at-the-money

index options on the S&P 500.

Specifically, we assume that how the investor values payoffs on risky assets has the

stochastic discount factor representation.28 Let Mt denote the stochastic discount factor,

and Ft−1 the investor’s information set at time t−1. Since the investor has frictionless access

to the risk free asset, the market portfolio, and call options on the market portfolio, the

28In our derivations, we follow the framework in Hansen and Jagannathan (1991) and Glosten and Jagan-
nathan (1994).
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followings relations hold:

1 = E [Mt(1 +Rf,t)|Ft−1]

0 = E
[
MtR

e
MKT,t|Ft−1

]
Vc,t−1 = E

[
Mt max

(
Re

MKT,t, 0
)
|Ft−1

]
,

where Rf,t is the risk free rate from t−1 to t and Vc,t−1 is the market price of the call option

which pays max
(
Re

MKT,t, 0
)

at the end of time t.

Regress Mt based on a constant, the market excess return, and the payoff on the call

option on the market based on the information set Ft−1. Let M̃t be the fitted part of Mt

and ẽt be the residual in that conditional regression. Then we can write Mt as follows:

Mt = M̃t + ẽt (12)

where

M̃t = λ0,t−1 + λ1,t−1R
e
MKT,t + λ2,t−1

(
Re

MKT,t, 0
)

(13)

E [ẽt|Ft−1] = E
[
Re

MKT,tẽt|Ft−1
]

= E
[
max

(
Re

MKT,t, 0
)
ẽt|Ft−1

]
= 0. (14)

The residual ẽt represents the risk that the investor cares about that is not an affine

function of the risk free return, market excess return, and the payoff of the call option on

the market excess return.

In a similar manner, regress the momentum strategy return on a constant, the mar-

ket excess return, and the call option payoff on the market given the information set Ft−1.
Recall that when the hidden state St is turbulent, which occurs with the probability of

Pr (St = T |Ft−1), the momentum strategy return and market excess return generating pro-

cesses are given by equation (2), where St is either calm or turbulent, and where εMOM,t and

εMKT,t are assumed to be drawn from a standard normal distribution.

We consider the following conditional regression given the information set Ft−1 that

includes the risk free return and the price of the call option on the market:

RMOM,t = αt−1 + β0
t−1R

e
MKT,t + β+

t−1 max
(
Re

MKT,t, 0
)

+ εMOM,t, (15)
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where

E [εMOM,t|Ft−1] = E
[
εMOM,tR

e
MKT,t|Ft−1

]
= E

[
εMOM,t max

(
Re

MKT,t, 0
)
|Ft−1

]
= 0.

Specifically, the vector of regression coefficients
[
αt−1 β0

t−1 β+
t−1
]′

is determined as

[
αt−1 β0

t−1 β+
t−1
]′

= (E [xtx
′
t|Ft−1])

−1 E [xtRMOM,t|Ft−1]

where xt =
[
1 Re

MKT,t max
(
Re

MKT,t, 0
)]′

, and

E [xtx
′
t|Ft−1] = Pr (St = C|Ft−1)E [xtx

′
t|St = C] + Pr (St = T |Ft−1)E [xtx

′
t|St = T ]

E [xtRMOM,t|Ft−1] = Pr (St = C|Ft−1)E [xtRMOM,t|St = C]

+ Pr (St = T |Ft−1)E [xtRMOM,t|St = T ] .

Furthermore, the regression equation of (15) can be expressed in terms of excess returns as

follows:

RMOM,t = α∗t−1 + β0
t−1R

e
MKT,t + β+

t−1Vc,t−1

(
max

(
Re

MKT,t, 0
)

Vc,t−1
− (1 +Rf,t)

)
+ εMOM,t, (16)

where the quantity in parenthesis is the excess return on one-period call option on the

market.29

α∗t−1 = αt−1 + (1 +Rf,t)β
+
t−1Vc,t−1. (17)

We denote α∗t−1 as the option adjusted alpha of the momentum strategy return. When the

following assumption holds,
α∗
t−1

1+Rf,t
gives the value at the margin of the momentum strategy

return from the perspective of the marginal investor.

Assumption 1. E [ẽtεMOM,t|Ft−1] = 0 where ẽt and εMOM,t are given in equations (12) and

(16), respectively.

With Assumption 1, the following proposition holds.

29The strike price of the option is the level of the market index times (1 + Rf,t, which means that the
option will be at-the-money at expiration if Re

MKT,t = 0.
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Proposition 1. The value of momentum strategy return to the investor whose stochastic

discount factor is Mt, is
α∗
t−1

1+Rf,t
.

Proof.

E [MtRMOM,t|Ft−1]

= α∗t−1E [Mt|Ft−1] + β0
t−1E

[
MtR

e
MKT,t|Ft−1

]
+β+

t−1Vc,t−1

(
E
[
Mt max

(
Re

MKT,t, 0
)
|Ft−1

]
Vc,t−1

− (1 +Rf,t)E [Mt|Ft−1]

)
+E [MtεMOM,t|Ft−1]

=
α∗t−1

1 +Rf,t

+ E
[(
M̃t + ẽt

)
εMOM,t|Ft−1

]
=

α∗t−1
1 +Rf,t

+ E [ẽtεMOM,t|Ft−1]

=
α∗t−1

1 +Rf,t

,

where the first equality follows from equation (16). The second equality follows from the

assumption that the investor, whose stochastic discount factor is Mt, agrees with the market

prices of the risk free asset, market excess return, and the call option payoff and the decom-

position in equation (12). The third equality follows from equation (13) and the properties of

the conditional regression residual εMOM,t. The last equality follows from Assumption 1.

In what follows we compute the time series of the estimated option adjusted alpha, α∗,

in (17) based on the time series of risk free returns and the prices of call options. We then

assess the validity of Assumption 1 by examining whether the residual in the equation (16)

is uncorrelated with various risk factors proposed in the literature. Figure 3 plots the time

series of α∗ calculated based on the estimated HMM model for the sample period 1996:01-

2013:12. Notice that the sample average of the α∗t−1’s is 1.15%/month, which is significantly

positive. However, α∗t−1 is negative during 1998:09-1998:10 (Russian crisis), 2002:08-2002:10

(dot-com bubble bursts), 2008:10-2008:12 and 2009:02-2009:04 (financial crisis), and 2011:10

(sovereign debt crisis) – time periods when months when option prices were high and the

market was more likely to be in the hidden turbulent state.

We compute the confidence intervals for the estimated option adjusted alphas as follows.

First, we simulate 10,000 sets of parameters from the asymptotic distributions obtained

from QML estimator, reported in Table 5. Then, for each set of parameters, we estimate
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the probability for the hidden state being turbulent based on the realized market excess

returns and momentum strategy returns in our sample period 1996:01-2013:12 . With the

simulated parameters, the estimated probabilities, and the time series of risk-free returns

and call option prices, we construct the time series of α∗’s for the period 1996:01-2013:12

as described earlier. Finally, for each month, we find the 95% confidence intervals of α∗ by

choosing the top and bottom 2.5% quantiles from the simulated 10,000 α∗ in each month.

In Figure 3, we plot the time series of estimated α∗t−1 along with 95% the corresponding

confidence intervals. In 167 of the 216 months in the sample period 1996:01-2013:12, the

option-adjusted alpha is significantly positive. While the option adjusted alpha is negative

during the other 49 months, only during two months – both occur during the recent financial

crisis period 2008:12 and 2009:03 – they are statistically significantly different from zero.

To assess the reasonableness of Assumption 1, we construct the time series of the residuals,

εMOM,t in equation (16), based on the estimated parameter values as follows.

εMOM,t = RMOM,t − α∗t−1 − β0
t−1R

e
MKT,t − β+

t−1Vc,t−1

(
max

(
Re

MKT,t, 0
)

Vc,t−1
− (1 +Rf,t)

)
.

We regress the residual on commonly used economy wide risk factors in the literature: the

three factors of market excess returns (MKT), small minus big size (SMB), high minus

low book to market (HML) in Fama and French (1993); robust minus weak (RMW) and

conservative minus aggressive (CMA) factor in Fama and French (2015); investment to assets

(I/A) and return on equity (ROE) factor in Hou et al. (2015); quality minus junk (QMJ)

factor in Asness et al. (2014); liquidity risk factor (LIQ) in Pastor and Stambaugh (2003);

funding liquidity risk factor (FLS) in Chen and Lu (2015); betting against beta (BAB)

risk factor in Frazzini and Pedersen (2014); changes in 3-Month LIBOR (LIBOR), Term

Spread (the yield spread between the 10-year treasury bond and 3-month T-bill, TERM),

Credit Spread (the yield spread between Moody’s BAA bond and AAA bond, CREDIT), and

TED Spread (the yield spread between the 3-month LIBOR and 3-month T-bill, TED); and

returns of variance swap (VAR-SWAP) across different horizons (Dew-Becker et al., 2015);

and the changes in VIX as well as the changes in left jump variations (LJV) embedded in

option prices measured by Bollerslev et al. (2015).30 Specifically, we estimate the regression

30We obtain MKT, SMB, HML, CMA and RMW from Ken French’s data library: http://mba.tuck.
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equation

εMOM,t = intercept + coeff× systematic factort + et

and report coeff (t-stat) and R2 in Table 11. Except for ROE factor in Hou et al. (2015),

we do not find any significant correlation between the residual we computed and systematic

risk factors. These findings are mostly consistent with the Assumption 1 that the residual

is conditionally uncorrelated with the systematic risk factors.

6 Conclusion

There is a vast literature documenting that the rather simple strategy of buying past win-

ners and selling past losers, commonly referred to as the momentum strategy, generates

abnormally high risk adjusted returns. However, such a strategy also experiences infrequent

but large losses. We provide an explanation for the phenomenon, i.e., why we see such large

losses occurring at periodic but infrequent intervals. We show that the way momentum port-

folios are formed embeds features that resemble a written call option on the market portfolio

into the momentum strategy returns. These features become accentuated in prolonged bear

markets when the market is volatile due to increased financial and operating leverage. This

makes the momentum strategy susceptible to large losses when the market sharply recovers.

We document several patterns in the data. Following prolonged depressed and volatile

market conditions, stocks in the loser portfolio become highly levered, behaving like out of

the money call option on the stock market. When the market recovers, the stocks in the

loser portfolio rise much more in value than the stocks in the winner portfolio. Since the

momentum strategy takes a short position in stocks in the loser portfolio, momentum crashes

tend to occur when the market recovers sharply from depressed market conditions, causing

extremely large momentum strategy losses. That is more likely if the market is turbulent

during those periods.

dartmouth.edu/pages/faculty/ken.french/data_library.html; QMJ and BAB data come from An-
drea Frazzini’s library: http://www.econ.yale.edu/~af227/data_library.htm; LIQ from Lubos Pas-
tor: http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2014.txt; LIBOR,
TERM, CREDIT, and TED from FRED: https://research.stlouisfed.org/fred2/ and VIX from the
CBOE: http://www.cboe.com/micro/vix/historical.aspx. Finally, we thank Zhuo Chen, Ian Dew-
Becker, and Grant Thomas Clayton for sharing FLS, VAR-SWAP, and LJV, respectively, and Lu Zhang
for supplying the I/A and ROE data.
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Motivated by these empirical observations, we model the time-varying systematic tail

risk of momentum strategy returns using a two-state hidden Markov model (HMM) where

the embedded option-like features of momentum strategy returns become accentuated in the

hidden turbulent state. We show that when the economy is in the latent turbulent state, the

volatilities of market excess returns and momentum strategy returns are more than doubled

In the calm state, both the momentum strategy returns and the market returns are less

volatile, and the option-like features of momentum strategy returns become attenuated.

We find that momentum crashes tend to occur more frequently during months in which

the hidden state is more likely to be turbulent. The turbulent state occurs infrequently in

the sample: the probability that the hidden state is turbulent exceeds 60% in only 179 of

the 1044 months in our 1927:01-2013:12 sample. Yet in each of the 13 severe loss months,

the ex-ante probability that the hidden state is turbulent exceeds 60 percent. Interestingly,

the average momentum strategy return during those 179 months is only -0.94% per month.

We derive the conditional alpha of the momentum strategy for a given month based on

the information available till the end of the previous month using HMM return generating

process for momentum strategy returns and market excess returns and the price of call

options on the market and the risk free rate. During 1996:01-2013:12 (216 months), for

which we have call option prices, the average conditional alpha is 1.15%/month, which is

significantly positive. However, the conditional alpha is negative during 49 out of the 216

months and significantly negative for two months 2008:12 and 2009:03 of the financial crisis

period.

We show that QML estimator of HMM parameters need not to be consistent when the

wrong normal likelihood is maximized. We find that the normally distributed residuals for

momentum strategy returns and Student-t (d.f.=5) distributed residuals for market excess

returns best describe the data. Our HMM model has the least number of false positives

in predicting momentum crashes when compared to models on historical realized volatility,

GARCH or past market returns.

26



References

Asness, Clifford S., Andrea Frazzini, and Lasse H. Pedersen, 2014, Quality Minus Junk,
Working paper, SSRN.

Asness, Clifford S., Tobias J. Moskowitz, and Lasse Heje Pedersen, 2013, Value and momen-
tum everywhere, Journal of Finance 68, 929–985.

Barberis, Nicholas, Andrei Shleifer, and Robert Vishny, 1998, A model of investor sentiment,
Journal of Financial Economics 49, 307–343.

Barroso, Pedro, and Pedro Santa-Clara, 2015, Momentum has its moments, Journal of Fi-
nancial Economics 116, 111–120.

Boguth, Oliver, Murray Carlson, Adlai Fisher, and Mikhail Simutin, 2011, Conditional risk
and performance evaluation: Volatility timing, overconditioning, and new estimates of
momentum alphas, Journal of Financial Economics 102, 363–389.

Bollerslev, Tim, Viktor Todorov, and Lai Xu, 2015, Tail Risk Premia and Return Predictabil-
ity, Journal of Financial Economics 118, 113–134.

Chabot, Benjamin, Eric Ghysels, and Ravi Jagannathan, 2014, Momentum Trading, Return
Chasing and Predictable Crashes, Manuscript .

Chan, K.C., 1988, On the contrarian investment strategy, Journal of Business 61, 147–163.

Chen, Zhuo, and Andrea Lu, 2015, A Market-Based Funding Liquidity Measure, Working
paper, Tsinghua University and University of Melbourne.

Daniel, Kent, David Hirshleifer, and Avanidhar Subrahmanyam, 1998, Investor psychology
and security market under- and overreactions, Journal of Finance 53, 1839–1885.

Daniel, Kent D., and Tobias J. Moskowitz, 2015, Momentum crashes, forthcoming Journal
of Financial Economics .

DeBondt, Werner F. M., and Richard H. Thaler, 1987, Further evidence on investor overre-
action and stock market seasonality, Journal of Finance 42, 557–581.

Dew-Becker, Ian, Stefano Giglio, Anh Le, and Marius Rodriguez, 2015, The Price of Vari-
ance Risk, Working paper, Northwestern University, University of Chicago, Penn State
University, and the Federal Reserve Board.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on
stocks and bonds, Journal of Financial Economics 33, 3–56.

Fama, Eugene F., and Kenneth R. French, 2015, A Five-Factor Asset Pricing Model, Journal
of Financial Economics 116, 1–22.

27



Frazzini, Andrea, and Lasse Heje Pedersen, 2014, Betting Against Beta, Journal of Financial
Economics 111, 1–25.

Glosten, Lawrence R., and Ravi Jagannathan, 1994, A contingent claim approach to perfor-
mance evaluation, Journal of Empirical Finance 1, 133–160.

Grinblatt, Mark, and Sheridan Titman, 1989, Mutual fund performance: an analysis of
quarterly portfolio holdings, Journal of Business 62, 393–416.

Grinblatt, Mark, and Sheridan Titman, 1993, Performance measurement without bench-
marks: An examination of mutual fund returns, Journal of Business 66, 47–68.

Grundy, Bruce, and J. Spencer Martin, 2001, Understanding the nature of the risks and the
source of the rewards to momentum investing, Review of Financial Studies 14, 29–78.

Hamilton, James D, 1989, A new approach to the economic analysis of nonstationary time
series and the business cycle, Econometrica 57, 357–84.

Hansen, Lars P., and Ravi Jagannathan, 1991, Implications of security market data for
models of dynamic economies, Journal of Political Economy 99, 225–262.

Henriksson, Roy D., and Robert C. Merton, 1981, On market timing and investment perfor-
mance. II. Statistical procedures for evaluating forecasting skills, Journal of Business 54,
513–533.

Hong, Harrison, and Jeremy C. Stein, 1999, A unified theory of underreaction, momentum
trading and overreaction in asset markets, Journal of Finance 54, 2143–2184.

Hou, Kewei, Chen Xue, and Lu Zhang, 2015, Digesting Anomalies: An Investment Approach,
Review of Financial Studies 28, 650–705.

Jagannathan, Ravi, and Robert A Korajczyk, 1986, Assessing the market timing performance
of managed portfolios, Journal of Business 59, 217–35.

Jegadeesh, Narasimhan, 1990, Evidence of predictable behavior of security returns, Journal
of Finance 45, 881–898.

Jegadeesh, Narasimhan, and Sheridan Titman, 1993, Returns to buying winners and selling
losers: Implications for stock market efficiency, Journal of Finance 48, 65–91.

Lehmann, Bruce N., 1990, Fads, martingales, and market efficiency, Quarterly Journal of
Economics 105, 1–28.

Liu, Laura Xiaolei, and Lu Zhang, 2008, Momentum profits, factor pricing, and macroeco-
nomic risk, Review of Financial Studies 21, 2417–2448.

Merton, Robert C., 1974, On the pricing of corporate debt: The risk structure of interest
rates, The Journal of Finance 29, 449–470.

28



Mitchell, Mark, and Todd Pulvino, 2001, Characteristics of risk and return in risk arbitrage,
Journal of Finance 56, 2135–2175.

Pastor, Lubos, and Robert F. Stambaugh, 2003, Liquidity risk and expected stock returns,
Journal of Political Economy 111, 642–685.

Rouwenhorst, K. Geert, 1998, International momentum strategies, Journal of Finance 53,
267–284.

Swaminathan, Bhaskaran, 2010, Qunatitative money management: A practical application
of behavioral finance, Working Paper .

White, Halbert, 1980, A heteroskedasticity-consistent covariance estimator and direct test
for heteroskedasticity, Econometrica 48, 817–838.

Wooldridge, Jeffrey M., 1999, Chapter 45 Estimation and Inference for Dependent Processes,
Handbook of Econometrics, Vol 4 2111–2245.

29



Table 1: Summary Statistics of Momentum Strategy Returns

Panel A reports the mean, standard deviation (SD), annualized Sharpe ratio (SR), skewness
(skew), kurtosis (kurt), maximum (max), and minimum (min) of momentum strategy returns
(MOM) along with those of market excess returns (Mkt-Rf), small size minus big size (SMB)
factor, high book-to-market ratio minus low book-to-market ratio (HML) factor, and scaled
market excess returns (Mkt-Rf∗) with the standard deviation equal to that of momentum
strategy returns. Panel B reports the average risk adjusted monthly return (alpha), calcu-
lated as the intercept from time series regressions of the MOM return on the Market and
the Fama and French (1993) three factor model, respectively, along with the corresponding
risk exposures (betas). The sample period is 1927:01-2013:12. The t-statistics are computed
using the heteroscedasticity consistent covariance estimator (White, 1980). The mean, SD,
max and min in Panel A and α in Panel B are reported in percentage per month.

Panel A: Summary Statistics

mean SD SR skew kurt max min

MOM 1.18 7.94 0.52 -2.43 21.22 26.18 -79.57
Mkt-Rf 0.64 5.43 0.41 0.16 10.35 38.04 -29.10
Mkt-Rf∗ 0.94 7.94 0.41 0.16 10.35 55.74 -42.64
SMB 0.24 3.24 0.26 2.05 23.46 37.45 -16.39
HML 0.39 3.52 0.39 1.92 18.69 34.08 -12.68

Panel B: Risk Adjusted MOM Returns

α βMkt−Rf Adj.R2

estimate 1.52 -0.52 0.13
(t-stat) (7.10) (-4.82)

α βMkt−Rf βSMB βHML Adj.R2

estimate 1.76 -0.38 -0.23 -0.70 0.23
(t-stat) (8.20) (-5.33) (-2.11) (-4.95)
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Table 2: Market Conditions during Momentum Crashes

Panel A presents the momentum strategy returns (RMOM), and the excess returns of winner portfolio, loser portfolio and market portfolio, denoted by Re
WIN,

Re
LOS and Mkt-Rf, respectively, during months with the momentum crashes worse than -20% during 1927:01-2013:12 along with the breakpoints for the winner

and loser portfolios, i.e., the threshold values for the cumulative returns over the measurement period from month t−12 to t− 2, i.e., (12-2 Ret) for entering

the winner and loser portfolios , and the ratio of the book value of debt to the market value of equity (BD/ME) of the winner and loser portfolios, the

cumulative market returns in percentage during the 36 and 12 months preceding the month in which the momentum portfolios are formed, and the realized

volatility of daily market returns during the 12 and 6 months preceding the month in which the momentum portfolios are formed. Sample averages of the

variables across thirteen months in which the momentum crashes were realized are reported in Panel B and the averages of those variables across all available

data are reported in Panel C. The book value of debt (BD) is available from 1964 onwards. Realized volatility is computed as the square root of the sum of

squared daily returns and reported as annualized percentage. All of the variables except BD/ME are reported in percentage.

Winner Portfolio Loser Portfolio Past Mkt Ret Past Mkt RV

Date RMOM Re
WIN Re

LOS Mkt-Rf
Break-
points

BD
/ME

Break-
points

BD
/ME

36 Mths 12 Mths 12 Mths 6 Mths

Panel A: Momentum Crash Months

1931:06 −29.03 8.17 37.20 13.79 −0.64 n.a. −74.07 n.a. −36.67 −45.68 22.74 20.90
1932:07 −60.37 13.95 74.32 33.60 −33.12 n.a. −88.35 n.a. −81.52 −65.87 41.73 40.23
1932:08 −79.57 14.36 93.93 36.46 −30.61 n.a. −86.25 n.a. −76.45 −51.19 41.60 38.91
1932:11 −22.68 −20.83 1.85 −5.61 50.00 n.a. −50.00 n.a. −67.25 −27.00 44.65 50.32
1933:04 −41.94 28.77 70.71 38.04 55.17 n.a. −54.55 n.a. −72.52 −12.66 45.55 39.33
1933:05 −28.03 19.27 47.30 21.38 114.00 n.a. −41.94 n.a. −61.25 46.97 45.32 40.36
1938:06 −33.34 10.45 43.79 23.72 −9.16 n.a. −68.93 n.a. 8.60 −39.09 32.45 29.26
1939:09 −44.57 7.92 52.49 16.96 51.22 n.a. −33.33 n.a. −16.29 −0.96 19.64 19.54
2001:01 −41.97 −6.94 35.03 3.12 94.09 0.08 −55.17 0.68 37.67 −11.58 24.48 22.15
2002:11 −20.40 2.12 22.52 5.96 64.42 0.12 −48.34 2.32 −30.71 −13.63 23.99 30.04
2009:03 −39.31 4.81 44.12 8.95 7.25 0.06 −79.52 70.55 −38.37 −42.63 42.11 56.03
2009:04 −45.89 −0.13 45.76 10.19 −1.76 0.07 −82.44 106.89 −34.05 −37.00 43.60 56.15
2009:08 −24.80 0.21 25.01 3.32 15.98 0.10 −66.10 55.57 −15.22 −18.90 45.14 32.77

Panel B: Averages Across Momentum Crash Months
−39.38 6.32 45.69 16.14 28.99 0.09 −63.77 47.20 −37.23 −24.56 36.39 36.62

Panel C: Average Across All Available Sample Months
1.18 1.24 0.06 0.64 76.08 0.10 −23.24 3.97 38.37 11.95 14.82 14.58
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Table 3: Option-like Feature of Momentum Returns and Market Conditions

We partition the months in our sample into three groups on the basis of the cumulative market
return during the 36 months immediately preceding the momentum portfolio formation date. The
‘High’ (’Low’) group consists of all months in which this variable is in the top (bottom) 20th
percentile. The rest of the months are classified as ‘Medium’. We estimate equation (1): using
ordinary least squares for the months within each group, and report the results in Panel A. The
dependent variable is either: the momentum strategy returns (RMOM), or the returns of the winner
or loser portfolio in excess of risk free return (Re

WIN and Re
LOS). For comparison, in Panel B we

report the estimates for the CAPM, without the exposure to the call option on the market in
(1). Panel C counts the number of momentum losses worse than 20% within each group. Panel
D reports the skewness of Re

p,t with that of estimated ε of (1). α is reported in percentage per
month. The t-statistics are computed using the heteroscedasticity-consistent covariance estimator
by White (1980). The sample period is 1929:07-2013:12.

State Variable: Past 36 Months Market Returns

Low Medium High

Re
p : RMOM Re

WIN Re
LOS RMOM Re

WIN Re
LOS RMOM Re

WIN Re
LOS

A: Henriksson-Merton Estimates

α 3.00 1.12 -1.88 2.62 1.03 -1.59 0.59 0.65 0.06
t(α) (3.28) (2.88) (-2.93) (5.20) (3.44) (-6.03) (1.04) (1.82) (0.17)
β0 -0.44 0.97 1.41 -0.08 1.27 1.35 0.20 1.40 1.19
t(β0) (-3.14) (12.45) (16.60) (-0.42) (11.80) (13.23) (1.89) (17.93) (13.45)
β+ -1.01 -0.29 0.72 -0.49 -0.26 0.23 0.26 -0.12 -0.38
t(β+) (-3.17) (-2.02) (3.60) (-1.51) (-1.37) (1.39) (0.94) (-0.78) (-1.92)
Adj.R2 0.48 0.77 0.83 0.06 0.71 0.72 0.06 0.81 0.62

B: CAPM Estimates

α 0.05 0.27 0.22 1.81 0.60 -1.21 1.08 0.41 -0.67
t(α) (0.08) (1.05) (0.45) (7.42) (4.62) (-7.42) (2.74) (1.90) (-2.45)
β -1.02 0.80 1.82 -0.32 1.14 1.47 0.31 1.35 1.04
t(β) (-6.60) (13.38) (18.01) (-3.40) (21.17) (27.93) (3.45) (30.06) (15.37)
Adj.R2 0.43 0.76 0.82 0.05 0.71 0.71 0.06 0.81 0.62

C: Number of Momentum Losses worse than -20%

11 2 0

D: Conditional Skewness

Re
p -2.33 -0.21 1.74 -0.98 -0.59 0.07 0.17 -0.73 -0.61

εp -0.48 -0.59 0.59 -0.76 -0.21 0.94 -0.12 1.07 0.81
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Table 4: Option-like Feature of Momentum Returns during Dotcom Crash

We estimate equation (1) with the momentum strategy return (RMOM) and the winner and loser
portfolio excess returns (Re

WIN and Re
LOS) as a candidate dependent variable. We use 36 monthly

data on returns during 2000:01-2002:12. α is reported in percentage per month. The t-statistics
are computed using the heteroscedasticity-consistent covariance estimator by White (1980).

Re
p : RMOM Re

WIN Re
LOS

α 3.41 1.57 -1.84
t(α) (0.92) (0.85) (-0.71)
β0 -0.42 1.25 1.67
t(β0) (-0.71) (3.06) (4.31)
β+ -1.35 -0.54 0.82
t(β+) (-1.26) (-0.81) (1.11)

Table 5: Quasi Maximum Likelihood Estimates of HMM Parameters

We maximize the likelihood of data with the assumption that both of εMOM,t in (2) and εMKT,t in
(3) are drawn from a standard normal distribution. The parameters are estimated using data for
the period 1927:01-2013:12. α, σMOM, and σMKT are reported in percentage per month.

Hidden State
St = Calm(C) St = Turbulent(T )

Parameter estimates (t-stat) estimates (t-stat)

α (%) 2.12 (6.88) 4.30 (3.54)
β0 0.37 (2.71) −0.20 (−1.25)
β+ −0.54 (−2.49) −1.25 (−3.87)
σMOM (%) 4.22 (12.65) 11.59 (11.65)
µ 1.00 (6.71) −0.49 (−0.82)
σMKT (%) 3.60 (22.78) 8.94 (9.11)
Pr (St=st−1|St−1 =st−1) 0.96 (8.19) 0.88 (6.20)
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Table 6: Distribution of HMM-implied moments of Pseudo Residuals

Monte Carlo simulation is performed as follows. First, we take the estimated parameters of our HMM model in Table 5 as given
and generate the time series of moment strategy returns and market excess returns of length of 1044 months (the number of months
during 1927:01-2013:12 in our sample) with a distributional assumption. Second, using this time series, we re-estimate our HMM
parameters, construct the time series of Pr(St = C|Ft−1) and Pr(St = T|Ft−1), and obtain the simulated time series of ε̂MOM,t and
ε̂MKT,t defined in (A.7) and (A.8). Finally, we compute the first four moments of ε̂MOM,t and ε̂MKT,t. We then repeat this exercise
10,000 times and generate the sampling distribution of four moments of ε̂MOM,t and ε̂MKT,t.

Pseudo Residuals of MOM: ε̂MOM,t Pseudo Residuals of MKT: ε̂MKT,t

Realized Quantiles (%) of Realized Quantiles (%) of
Moments Simulated Moments Moments Simulated Moments

0.5 2.5 50 97.5 99.5 0.5 2.5 50 97.5 99.5
Panel A: Using Residuals with Normal Distribution

mean 0.04 -0.06 -0.04 0.00 0.05 0.06 -0.04 -0.05 -0.04 -0.02 0.00 0.00
std.dev 1.19 1.15 1.17 1.26 1.36 1.39 1.15 1.07 1.08 1.13 1.19 1.22
skewness -0.16 -1.40 -0.98 -0.14 0.66 0.78 -0.38 -1.02 -0.68 -0.20 0.16 0.30
kurtosis 5.06 4.75 5.15 7.49 12.71 15.47 6.19 3.54 3.79 4.97 7.74 8.39

Panel B: Using Residuals with Student-t distribution d.f. 5
mean 0.04 -0.09 -0.06 0.00 0.06 0.08 -0.04 -0.08 -0.07 -0.03 0.00 0.01
std.dev 1.19 1.22 1.27 1.43 1.63 1.73 1.15 1.13 1.16 1.26 1.42 1.50
skewness -0.16 -4.54 -2.54 -0.22 1.32 2.67 -0.38 -4.44 -1.92 -0.24 1.30 2.75
kurtosis 5.06 6.47 6.88 11.26 39.95 77.98 6.19 5.04 5.56 9.11 36.63 78.65
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Table 7: Extreme Losses/Gains Conditional on Pr (St = Turbulent|Ft−1)

This table presents the fraction of the total number of extreme losses/gains greater than a given
value that occur when Pr (St = Turbulent|Ft−1) is larger than a given threshold. The sample
period is 1927:01-2013:12.

Pr (St=T |Ft−1)
# Extreme losses during turbulent months

/# Extreme losses in the sample
# of

is more than ≤ −20% ≤ −17.5% ≤ −15% ≤ −12.5% ≤ −10% Months

80% 11/13 16/21 19/32 23/37 26/56 123
70% 12/13 17/21 20/32 24/37 28/56 152
60% 13/13 18/21 22/32 26/37 31/56 179
50% 13/13 19/21 23/32 27/37 32/56 208
40% 13/13 19/21 23/32 27/37 33/56 229
30% 13/13 20/21 24/32 28/37 37/56 270
20% 13/13 20/21 27/32 31/37 40/56 307
10% 13/13 21/21 30/32 34/37 46/56 403

Pr (St=T |Ft−1)
# Extreme gains during turbulent months

/# Extreme gains in the sample
# of

is more than ≥ 20% ≥ 17.5% ≥ 15% ≥ 12.5% ≥ 10% Months

80% 5/12 6/15 11/28 18/45 27/74 123
70% 5/12 7/15 13/28 20/45 31/74 152
60% 8/12 10/15 16/28 23/45 35/74 179
50% 8/12 10/15 18/28 27/45 40/74 208
40% 8/12 10/15 18/28 29/45 44/74 229
30% 8/12 10/15 18/28 29/45 46/74 270
20% 9/12 11/15 19/28 31/45 49/74 307
10% 9/12 11/15 20/28 34/45 57/74 403
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Table 8: Probit/Logit Regressions for Predicting Momentum Crashes

We examine the extent to which our tail risk measure succinctly summarizes the information about the likelihood of large momentum
strategy losses using the following probit and logit models: Pr (RMOM,t < Threshold) = F (a + b′Xt−1). For the predictors of Xt−1,
we use our tail risk measure as well as the past market returns over the previous 36 months, the realized volatility of daily market
returns over the previous 12 months, the interaction of past market returns and the volatility, and financial leverage (BD/ME) of
the loser portfolio which are related to the large losses in momentum strategy returns, as shown in Tables 2 and 3. We report results
below with Threshold = -10%. Panel A reports the results for the longer sample, 1929:07-2013:12. bi represents the coefficient on
the predictors of our tail risk measure when i= 1, the past market returns over the previous 36 months when i = 2, the realized
volatility of daily market returns over the previous 12 months when i = 3, the interaction of past market returns and the market
volatility when i = 4 and financial leverage (BD/ME) of the loser portfolio when i = 5. t(bi) is the t-statistic of the corresponding
coefficient. Panel B reports the results for the shorter sample, 1964:01-2013:12 when financial leverage (BD/ME) of the loser portfolio
is available.

Panel A: The longer sample, 1929:07-2013:12
A-1: Probit A-2: Logit

b1 1.48 1.06 3.03 2.20
t(b1) (7.47) (3.96) (7.41) (4.01)
b2 -0.01 0.02 -0.02 0.03
t(b2) (-4.87) (1.81) (-5.18) (1.63)
b3 0.05 0.00 0.09 0.00
t(b3) (6.96) (-0.17) (7.20) (-0.35)
b4 0.00 0.00 0.00 0.00
t(b4) (-4.65) (-0.30) (-5.31) (-0.12)
a -2.12 -1.38 -2.43 -1.52 -2.27 -3.98 -2.40 -4.47 -2.71 -4.19
t(a) (-19.41) (-18.16) (-16.61) (-22.63) (-10.81) (-15.42) (-16.20) (-14.68) (-19.17) (-09.51)

Continued on next page
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Table 8 – continued from previous page

Panel B: The shorter sample, 1964:01-2013:12
B-1: Probit B-2: Logit

b1 1.41 1.00 2.87 2.09
t(b1) (5.42) (3.09) (5.47) (3.14)
b2 -0.01 0.01 -0.02 0.01
t(b2) (-2.70) (0.61) (-2.85) (0.41)
b3 0.05 0.00 0.10 -0.01
t(b3) (5.06) (-0.45) (5.19) (-0.67)
b4 0.00 0.00 0.00 0.00
t(b4) (-2.16) (0.35) (-2.49) (0.57)
b5 0.03 0.01 0.05 0.03
t(b5) (3.85) (1.38) (4.02) (1.42)
a -2.04 -1.38 -2.46 -1.48 -1.75 -2.12 -3.81 -2.37 -4.46 -2.56 -3.15 -3.77
t(a) (-15.21) (-12.76) (-12.00) (-15.66) (-18.13) (-6.05) (-12.16) (-11.01) (-10.92) (-13.45) (-15.01) (-5.56)
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Table 9: False Positives In Predicting Momentum Crashes

We compare the number of false positives in predicting momentum crashes across different tail
risk measures. The number of false positives of a given tail risk measure is computed as follows.
Suppose we classify months in which momentum strategy returns lost more than a threshold X.
Let Y denote the lowest value attained by a given tail risk measure during those momentum crash
months. During months when the tail risk measure is above the threshold level of Y , we count the
number of months when momentum crashes did not occur and we denote it as the number of false
positives. We consider X=10%, 20%, 30%, 40%. In Panel A, we use Pr (St = Turbulent|Ft−1)
as a tail risk measure. The results in Panel A-1 are from our original HMM model specified in
(2), (3) and (4). To emphasize the importance of option-like feature β+(St) in (2), we impose the
restriction β+(St) = 0 and report the associated results in Panel A-2. We examine the hybrid
case where εMOM,t is drawn from Normal distribution and εMKT,t is drawn from Student-t (d.f.=5)
distribution. Results of which are reported in Panel A-3. In Panel B, we use various estimates of
the volatility of momentum strategy returns as tail risk measures. Specifically, we estimate the
volatility of the momentum strategy returns using GARCH (1,1) and realized volatility of daily
momentum strategy returns over the previous 3, 6, 12, and 36 months. In Panel C, we use the
volatility of the market return estimated using GARCH(1,1) and realized volatility of the daily
market return during the preceding 3, 6, 12, and 36 months as tail risk measures. In Panel D, we
use the market return during the preceding 3, 6, 12 and 36 month windows as tail risk measures.

Momentum Crash Threshold (-X)

Tail Risk Measure ≤ −40% ≤ −30% ≤ −20% ≤ −10%

Panel A: HMM

A-1: Main Specification

Pr(St = T|Ft−1) 144 142 137 931

A-2: Without the option-like feature β+(St) = 0

Pr(St = T|Ft−1) 171 169 164 930

A-3: Extension to Normal (εMOM,t) and Student-t (εMKT,t)

Pr(St = T|Ft−1) 121 119 114 902

Panel B: Momentum Strategy Returns Volatility

GARCH(1,1) 263 261 256 829
RV(3 Months) 234 232 227 922
RV(6 Months) 194 192 187 892
RV(12 Months) 154 152 147 866
RV(36 Months) 180 178 173 951

Continued on next page
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Table 9 – continued from previous page

Panel C: Market Returns Volatility

GARCH(1,1) 188 186 181 809
RV(3 Months) 166 164 159 889
RV(6 Months) 183 181 176 920
RV(12 Months) 191 189 184 796
RV(36 Months) 179 177 172 858

Panel D: Past Market Returns

3 Months 618 616 980 948
6 Months 131 129 918 944
12 Months 249 247 966 938
36 Months 491 489 484 930
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Table 10: Momentum and Market excess returns in Calm and Turbulent Markets

We classify 1044 months in our sample period of 1927:01-2013:12 into two mutually exclusive groups, depending on whether
the tail risk measure for each month is higher than a given threshold value (Turbulent market) or lower than a given
threshold value (Calm market). The properties of momentum strategy returns and market excess returns within each
group, for various choices of the threshold tail risk measure, are given in the table below. SD and SR represent the
standard deviation and the Sharpe ratio, respectively. N represents the number of months in each group out of 1044
months over 1927:01-2013:12. Mean and SD are presented in percentage.

Market Condition

Calm Turbulent

Momentum Market Momentum Market

Threshold Mean SD SR Mean SD SR N Mean SD SR Mean SD SR N

10% 1.65 4.67 1.22 0.79 4.12 0.66 641 0.44 11.30 0.13 0.42 7.02 0.13 403
20% 1.64 4.97 1.14 0.70 4.18 0.58 737 0.10 12.39 0.03 0.51 7.63 0.14 307
30% 1.60 5.12 1.08 0.65 4.27 0.53 774 −0.02 12.92 0.00 0.63 7.86 0.17 270
40% 1.54 5.20 1.03 0.71 4.34 0.57 815 −0.10 13.77 −0.02 0.42 8.22 0.11 229
50% 1.58 5.23 1.04 0.66 4.38 0.52 836 −0.40 14.27 −0.10 0.59 8.43 0.14 208
60% 1.62 5.36 1.05 0.63 4.41 0.49 865 −0.94 14.97 −0.22 0.73 8.85 0.17 179
70% 1.56 5.91 0.91 0.65 4.55 0.49 892 −1.01 14.94 −0.23 0.64 9.02 0.15 152
80% 1.53 6.00 0.88 0.60 4.68 0.44 921 −1.39 16.09 −0.30 1.02 9.31 0.22 123

40



Table 11: Systematic Risk in Momentum Strategy Returns

When the specification of (16) describes the systematic risk of momentum strategy returns,
εMOM,t should be unrelated to various economy wide factors examined in the literature.
To examine whether this is the case, we regress εMOM,t on various systematic risk factors,
εMOM,t = intercept + coeff × systematic factort + et. Results are tabulated below using
the data from 1996:01 to 2013:12 (216 months) where we can reconstruct εMOM,t from the
market prices of call option on S&P 500 from OptionMetrics. Details on systematic factors
are described in the main text.

Panel A: General Factors

systematic factor coeff t(coeff) R2(%) First Month Last Month N

MKT -0.14 -0.92 0.57 1996:01 2013:12 216
SMB 0.25 0.96 1.09 1996:01 2013:12 216
HML -0.50 -1.89 3.96 1996:01 2013:12 216
RMW 0.03 0.08 0.01 1996:01 2013:12 216
CMA 0.03 0.07 0.01 1996:01 2013:12 216
I/A -0.20 -0.45 0.28 1996:01 2013:12 216

ROE 1.06 3.25 14.75 1996:01 2013:12 216
QMJ 0.56 1.86 4.39 1996:01 2013:12 216

Panel B: Liquidity Related Factors

systematic factor coeff t(coeff) R2(%) First Month Last Month N

LIQ 0.26 1.31 1.57 1996:01 2013:12 216
FLS 0.07 0.56 0.71 1996:01 2012:10 202
BAB 0.24 0.94 1.46 1996:01 2012:03 195

∆ LIBOR 0.05 1.19 1.66 1996:01 2013:12 216
∆ TERM -0.04 -1.33 1.09 1996:01 2013:12 216

∆ CREDIT 0.03 0.70 0.24 1996:01 2013:12 216
∆ TED 0.00 -0.12 0.00 1996:01 2013:12 216

Panel C: Tail Risk Related Factors

systematic factor coeff t(coeff) R2(%) First Month Last Month N

VAR-SWAP 1M 0.00 -0.34 0.03 1996:02 2013:09 212
VAR-SWAP 3M 0.01 0.91 0.15 1996:03 2013:08 210
VAR-SWAP 6M 0.02 1.60 0.55 1996:08 2013:08 203
VAR-SWAP 12M 0.01 0.59 0.09 1997:03 2013:08 193

∆ VIX 0.00 1.12 0.49 1996:01 2013:12 216
∆ LJV -0.54 -0.28 0.04 1996:01 2013:12 216
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Figure 1: Empirical Frequency of Momentum Strategy Returns (MOM)

Panel A plots the smoothed empirical density of the MOM and the normal density with
the same mean and standard deviation. To highlight the left skew of momentum strategy
returns, we represent 25 MOM returns (13 in left tails and 12 in right tails) that exceed 20%
in absolute value. Panel B plots the the empirical density of MOM along with the empirical
density of scaled market excess returns, Mkt-Rf∗, with standard deviation equal to that of
momentum strategy returns. The sample period is 1927:01-2013:12.
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Figure 2: Momentum Returns and Probability of the Hidden State being Tur-
bulent

The figure presents a scatter plot of momentum strategy return on the vertical axis and
Pr (St = Turbulent|Ft−1), the probability that the hidden state is turbulent, on the horizontal
axis. Momentum strategy returns below -20% are highlighted in red, and returns of exceeding
20% are in green. Figure (a) is based on in-sample estimates using all 1044 months (1927:01-
2013:12). For each month t of the last 400 months in 1980:09-2013:12, we skip first 10 years
over 1927:01-1936:12 and estimate our HMM using data from 1937:01 till month t−1 to
compute Pr (St = Turbulent|Ft−1). Figure (b) reports out-of-sample results.
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Figure 3: Time Series of Option Adjusted Alpha

Option adjusted alpha, α∗, is computed by (17). The sample period is 1996:01 to 2013:12
where we can find the market price of call option on S&P 500 from OptionMetrics. 95%
confidence intervals are computed as follows. First, we simulate 10,000 sets of parameters
from the asymptotic distributions of parameters obtained from ML estimator. Then, for
each set of parameters, we compute the monthly time series of α∗. Lastly, in each month,
we find 95% confidence intervals of α∗ by choosing top and bottom 2.5% quantiles from the
simulated 10,000 observations of α∗.
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Appendix A QML Estimation Robustness

In Subsection 3.2, we estimate the parameters of our HMM by maximizing the likelihood

function in equation (6) under the assumption that the residuals in (2) and (3) are jointly

normally distributed. Here, we show that our HMM model behaves properly along several

dimensions even when residuals are not drawn from normal distribution and examine the

nature of deviations from normality.

To summarize, we find that point estimates for HMM parameters are fairly robust against

the deviation from the normality assumption. We show in Appendix A.1 that the QML

estimator that maximizes the (wrong) normal likelihood will not in general provide consistent

estimates of the true HMM parameters. However, we find that the QML estimates are

reasonably well behaved in finite samples when true residuals are drawn from Student-

t distribution. We further show that the momentum residuals (in equation (2)) appear

normally distributed, but the market residuals (in equation (3)) are better characterized as

Student-t (d.f.=5).

In Table 5, we examine the effect of deviations from normality on QML point estimates

using Monte Carlo simulations when the residuals in (2) and (3) are drawn from Student-

t distribution with d.f. (degrees of freedom) 10 and 5. We simulate momentum strategy

returns and market excess returns over 1044 months using HMM parameters in Table 5 and

the residuals drawn from Student-t distribution. With the simulated data, we re-estimate

the parameters of our HMM by maximizing the misspecified normal likelihood as described

in the previous subsection. By repeating this exercise 1,000 times, we construct the sampling

distribution of QML point estimates, the results of which are reported in Table B.1. When

the residuals in (2) and (3) are drawn from Student-t with d.f. 10, the mean of QML

estimator is quite close to the true value. Also, when the residuals are drawn from Student-

t with d.f. 5, although the variances in calm state, σMOM (C) and σMKT (C), tend to be

underestimated, the magnitude of the biases are small.

Next, we examine the sensitivity of the ranking based on the conditional probability

that the (unobserved) state is Turbulent (Pr (St = T|Ft−1)) when the residuals in the return

generating processes are drawn from Student-t distributions. We generate a time series

of length 50,000 months of momentum strategy and market excess returns by Monte Carlo
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simulation when these returns are generated by the hidden Markov model with parameters in

Table 5 where residuals in (2) and (3) are drawn from a bivariate Student-t distribution with

d.f. (degree of freedom) 10 and 5. Then, we compute the tail risk measure Pr(St = T|Ft−1)
for each of simulated 50,000 months using i) the true likelihood (Student-t) function and ii)

the misspecified likelihood (normal) function. This gives a set of two Pr(St = T|Ft−1) values

for each month in the simulated time series. Given Pr(St = T|Ft−1), we classify month t as

belonging to the ‘Low’ (‘High’) group if Pr(St = T|Ft−1) is below the 30th percentile (above

the 70th percentile). Months with Pr(St = T|Ft−1) falling in between the 30th and 70th

percentile are classified as belonging to the ‘Med’ group. Table B.2 present a 3×3 matrix,

summarizing the joint distribution of Pr(St = T|Ft−1) inferred through the true likelihood

(Student-t) function and the misspecified likelihood (normal) function. When the residuals

are drawn from Student-t distribution with d.f. 10, 96.9% (73.8+15.3+7.8) of simulated

sample belong to the same groups whether we use the correct Student-t or the wrong normal

distribution to compute Pr(St = T|Ft−1). When the residuals are drawn from Student-t

distribution with d.f. 5, 93.4% (72.7+13.9+6.9) of samples are consistently classified by

either true likelihood (Student-t) function or misspecified likelihood (normal) function.

In what follows, we examine the nature of deviations from normality. Since we do not

directly observed the residuals of our HMM (because St is not directly observed) we examine

the moments of the pseudo residuals – the probability weighted residuals of the two hidden

states. We can write the residuals of our HMM return generating process as follows:

εMOM,t = I(St = C)eMOM,t(C) + I(St = T )eMOM,t(T ), (A.1)

εMKT,t = I(St = C)eMKT,t(C) + I(St = T )eMKT,t(T ), (A.2)

where I(·) is an indicator function and

eMOM,t(C) =
1

σMOM (C)

(
RMOM,t − α (C)− β0 (C)Re

MKT,t − β+ (C) max
(
Re

MKT,t, 0
))

(A.3)

eMOM,t(T ) =
1

σMOM (T )

(
RMOM,t − α (T )− β0 (T )Re

MKT,t − β+ (T ) max
(
Re

MKT,t, 0
))

(A.4)

eMKT,t(C) =
1

σMKT (C)

(
Re

MKT,t − µ (C)
)

(A.5)

eMKT,t(T ) =
1

σMKT (T )

(
Re

MKT,t − µ (T )
)
. (A.6)
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If we could observe the hidden states, εMOM,t and εMKT,t could be constructed from the

observed momentum strategy returns and market excess returns. However, since I(St = C)

and I(St = T ) are not observed, we cannot construct a consistent estimator of εMOM,t and

εMKT,t in (A.1) and (A.2).

We therefore define pseudo residuals – the probability weighted averages of sample counter

parts of eMOM,t(C), eMOM,t(T ), eMKT,t(C) and eMKT,t(T ), in (A.3), (A.4), (A.5) and (A.6) –

as follows:

ε̂MOM,t = Pr(St = C|Ft−1)êMOM,t(C) + Pr(St = T |Ft−1)êMOM,t(T ) (A.7)

ε̂MKT,t = Pr(St = C|Ft−1)êMKT,t(C) + Pr(St = T |Ft−1)êMKT,t(T ) (A.8)

by replacing the state indicator functions of I(St = C) and I(St = T ) with the inferred

probabilities of Pr(St = C|Ft−1) and Pr(St = T |Ft−1), respectively, and using QML esti-

mates for our HMM of α̂ (C) , α̂ (T ) , β̂0 (C) , β̂0 (T ) , β̂+ (C) , β̂+ (T ) , σ̂MOM (C) , σ̂MOM (T ),

µ̂ (C) , µ̂ (T ) , σ̂MKT (C) , σ̂MKT (T ):

êMOM,t(C) =
1

σ̂MOM (C)

(
RMOM,t − α̂ (C)− β̂0 (C)Re

MKT,t − β̂+ (C) max
(
Re

MKT,t, 0
))
(A.9)

êMOM,t(T ) =
1

σ̂MOM (T )

(
RMOM,t − α̂ (T )− β̂0 (T )Re

MKT,t − β̂+ (T ) max
(
Re

MKT,t, 0
))
(A.10)

êMKT,t(C) =
1

σ̂MKT (C)

(
Re

MKT,t − µ̂ (C)
)

(A.11)

êMOM,t(T ) =
1

σ̂MOM (T )

(
Re

MKT,t − µ̂ (T )
)
. (A.12)

Note that the pseudo residuals of ε̂MOM,t and ε̂MKT,t will in general not normally dis-

tributed even when the true residuals are normally distributed and we replace the estimated

êMOM,t(C), êMOM,t(T ), êMKT,t(C), and êMOM,t(T ) in (A.9) - (A.12) with the population coun-

terparts eMOM,t(C), eMOM,t(T ), eMKT,t(C), and eMKT,t(T ) in (A.3) - (A.6) due to the unob-

servability of the hidden state St.

Substituting êMOM,t(C), êMOM,t(T ), êMKT,t(C), and êMKT,t(T ) in the RHS of (A.7) and
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(A.8) with the expressions of (A.9) - (A.12) and rearranging terms, we get

ε̂MOM,t =
(

λt−1

σ̂MOM(C)
+ 1−λt−1

σ̂MOM(T )

)
RMOM,t −

(
λt−1α̂(C)
σ̂MOM(C)

+ (1−λt−1)α̂(T )
σ̂MOM(T )

)
−
(
λt−1β̂0(C)
σ̂MOM(C)

+ (1−λt−1)β̂0(T )
σ̂MOM(T )

)
Re

MKT,t

−
(
λt−1β̂+(C)
σ̂MOM(C)

+ (1−λt−1)β̂+(T )
σ̂MOM(T )

)
max

(
Re

MKT,t, 0
)
,

ε̂MKT,t =
(

λt−1

σ̂MKT(C)
+ 1−λt−1

σ̂MkT(T )

)
Re

MkT,t −
(
λt−1µ̂(C)
σ̂MKT(C)

+ (1−λt−1)µ̂(T )
σ̂MKT(T )

)
,

where λt−1 = Pr(St = C|Ft−1). We will examine whether the empirical distribution of

ε̂MOM,t and ε̂MKT,t constructed from estimated HMM parameters and observed momentum

strategy returns and market excess returns matches its’ analogue constructed from Monte

Carlo simulation where RMOM,t and Re
MKT,t are generated by our HMM model in (2), (3), and

(4) when true residuals of εMOM,t and εMKT,t are drawn from normal or Student-t (d.f.=5)

distribution.

Monte Carlo simulation is performed as follows. First, we take the estimated parameters

of our HMM model in Table 5 as given and generate the time series of moment strategy

returns and market excess returns of length of 1044 months (the number of months during

1927:01-2013:12 in our sample) with a distributional assumption. Second, using this time

series, we re-estimate our HMM parameters, construct the time series of Pr(St = C|Ft−1)
and Pr(St = T |Ft−1), and obtain the simulated time series of ε̂MOM,t and ε̂MKT,t defined in

(A.7) and (A.8). Finally, we compute the first four moments of ε̂MOM,t and ε̂MKT,t. We then

repeat this exercise 10,000 times and generate the sampling distribution of four moments of

ε̂MOM,t and ε̂MKT,t, summarized in Table 6. Panel A (B) of Table 6 reports the results using

normal distribution (Student-t distribution with d.f.=5). First three moments of ε̂MOM,t

lie within 95% confidence region for the corresponding moments obtained by Monte Carlo

simulation using normal distribution while the kurtosis of ε̂MOM,t lies just to the left of the

95% interval with p-value 4%. In contrast, if we use Student-t (d.f.=5) distribution, the

standard deviation and kurtosis of ε̂MOM,t fall outside of 99% confidence interval. Hence, the

empirical behavior of ε̂MOM,t fits better with normal distribution. Regarding the behavior

of ε̂MKT,t, both distributions fits well to the data, while the standard deviation of ε̂MKT,t is

slightly off the 95% confidence interval from the simulated distribution of using Student-t

distribution. In summary, we find that the diagnosis using pseudo residuals supports that
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the residuals in our HMM model are close to normal distribution.

Another diagnostic is to compare the empirical moments of momentum strategy returns

and market excess returns with our HMM-implied moments for various combination of nor-

mal and Student-t distributions for residuals. Details are given in Appendix B. We find that

normally distributed residuals for momentum strategy returns and Student-t distributed

residuals for market excess returns help match the empirical moments. We treat QML es-

timates obtained with this distributional assumption as a distinct alternative specification

when we compare models later.

A.1 Inconsistency of QML

In this paper, we estimate the parameters for our HMM specification under the assumption

that shocks are drawn from —em i.i.d. normal distributions. We showed that the estimates

are reasonably well behaved even when shocks are drawn from Student-t distributions, even

though the parameters are estimated under the normality assumption, i.e., our estimates are

Quasi-Maximum Likelihood (QML). Wooldridge (1999) provides sufficient conditions for the

consistency and asymptotic normality of QML estimators These conditions are not satisfied

in our case. Below, we provide an example where the HMM return generating process

innovations are non-normal distribution and the QML estimator obtained by maximizing

the misspecified normal likelihood, gives an asymptotically biased (inconsistent) estimate of

the true parameter value.

Suppose Rt follows the process given below:

Rt = σ (St) εt, (A.13)

where σ (St) is either σH or σL, depending on the realization of hidden state of St which is

either H or L. The transition probability matrix that determines the evolution of the hidden

state St is given by

Π =

[
Pr(St = H|St−1 = H) Pr(St = L|St−1 = H)
Pr(St = H|St−1 = L) Pr(St = L|St−1 = L)

]
=

[
p 1− p

1− p p

]
. (A.14)

An econometrician observes the time series of {Rt}Tt=1 but not the underlying state. The

parameters p and σL are known. The econometrician estimates the unknown parameter σH
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by QML, that is by assuming that εt is drawn from the standard normal distribution, whereas

εt is either 1 or -1 with equal probability. In what follows, we show that when

σH = 1.5, σL = 1, and p = 0.52, (A.15)

the QML estimator of σH is consistent.

The misspecified normal log likelihood of {Rt}Tt=1 is given by

1

T

T∑
t=1

log (L (Rt)) , (A.16)

where

L (Rt) = λt−1φ (Rt|σH) + (1− λt−1)φ(Rt|σL), (A.17)

φ (x|σ) = 1
σ
√
2π

exp
(
− x2

2σ2

)
is the density function of N (0, σ2), and λt−1 is the probability

for St = H given the information set Ft−1 = {R1, R2, · · · , Rt−1} when the econometrician

uses the (incorrect) normal density for inference. When the true likelihood is used, let λ∗t−1

denote the probability of St = H given Ft−1. Since St is hidden, both λt−1 and λ∗t−1 are

weighted averages of p and 1− p and the following should be satisfied:

1− p ≤ λt−1, λ
∗
t−1 ≤ p (A.18)

for every Ft−1.
The QML estimate σ̂H is obtained by maximizing (A.16), giving rise to the first order

condition:

1

T

T∑
t=1

∂ log (L (Rt))

∂σH
|σH=σ̂H = 0. (A.19)

If σ̂H converges to σ0
H, the true value of σH, the following should hold:

E
[
E
[
∂ log (L (Rt))

∂σH
|Ft−1

]]
σH=σ0

H

= 0. (A.20)

We show the inconsistency of σ̂H by verifying that (A.20) cannot hold. When σH =

σ0
H, there exists δ > 0 such that E

[
∂ log(L(Rt))

∂σH
|Ft−1

]
< −δ for every Ft−1, implying that
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E
[
E
[
∂ log(L(Rt|σH))

∂σH
|Ft−1

]]
< −δ.

Hereafter, we will evaluate the conditional expectation at σH = σ0
H. From (A.17), note

that E
[
∂ log(L(Rt))

∂σH
|Ft−1

]
is decomposed as follows:

E
[
∂ log (L (Rt))

∂σH
|Ft−1

]
= E

[
λt−1
L (Rt)

∂φ (Rt|σH)

∂σH
|Ft−1

]
+ E [φ (Rt|σH)− φ (Rt|σL) |Ft−1]

∂λt−1
∂σH

. (A.21)

To determine the sign of each component in RHS of (A.21), we need the conditional distri-

bution of Rt. Since λ∗t−1 is the true probability of St = H given Ft−1 and εt in (A.13) is

drawn from a binomial distribution of 1 or -1 with equal probability, the probability mass of

Rt over (−σH,−σL, σL, σH) equals
(
λ∗t−1

2
,
1−λ∗t−1

2
,
1−λ∗t−1

2
,
λ∗t−1

2

)
.

First, we determine the sign of E
[
λt−1

L(Rt)
∂φ(Rt|σH)

∂σH
|Ft−1

]
. From the properties of the normal

density, it follows that ∂φ(x|σ)
∂σ

= φ(x|σ)
(
− 1
σ

+ x2

σ3

)
and φ(−x|σ) = φ(x|σ). Hence

E
[
λt−1
L

∂φ (Rt|σH)

∂σH
|Ft−1

]
=

λ∗t−1
2

∑
Rt=−σH,σH

λt−1
L (Rt)

φ(Rt|σH)

(
− 1

σH
+
R2
t

σ3
H

)
+

1− λ∗t−1
2

∑
Rt=−σL,σL

λt−1
L (Rt)

φ(Rt|σH)

(
− 1

σH
+
R2
t

σ3
H

)

=

(
1− λ∗t−1

)
λt−1

L(σL)
φ(σL|σH)

(
− 1

σH
+
σ2
L

σ3
H

)
< − (1− p)2 φ(σL|σH)

φ(σL|σL)

(
σ2
H − σ2

L

σ3
H

)
, (A.22)

where the last inequality is from (A.18) and L(σL) < φ(σL|σL).

Next, from the property, φ(−x|σ) = φ(x|σ), and the fact that φ (x|σ) = 1
σ
√
2π

exp
(
− x2

2σ2

)
,

the sign of E [φ (Rt|σH)− φ (Rt|σL) |Ft−1] is determined as follows:

E [φ (Rt|σH)− φ (Rt|σL) |Ft−1]

=
λ∗t−1

2

∑
Rt=−σH,σH

(φ (Rt|σH)− φ (Rt|σL)) +
1− λ∗t−1

2

∑
Rt=−σL,σL

(φ (Rt|σH)− φ (Rt|σL))

= λ∗t−1 (φ (σH|σH)− φ (σH|σL)) +
(
1− λ∗t−1

)
(φ (σL|σH)− φ (σL|σL))

> (1− p) (φ (σH|σH)− φ (σH|σL)) + p (φ (σL|σH)− φ (σL|σL)) > 0, (A.23)
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where the last two inequalities can be verified by (A.18) and the given parameter values of

(A.15).

Finally, we show that ∂λt−1

∂σH
≤ 0 by induction. We assume that λ0 is determined as

the steady state distribution determined by (A.14). Since λ0 does not depend on σH, the

following holds:

∂λ0
∂σH

= 0. (A.24)

Next, we show that ∂λt−1

∂σH
≤ 0 implies ∂λt

∂σH
≤ 0. Note that the process of {λt}Tt=0 is constructed

by the following recursion:

λ̃t =
λt−1φ (Rt|σH)

λt−1φ (Rt|σH) + (1− λt−1)φ (Rt|σL)
, (A.25)

and

λt = pλ̃t + (1− p)
(

1− λ̃t
)
. (A.26)

Equation (A.25) describes how the econometrician updates the probability on the hidden

state of St using the misspecified normal likelihood after observing Rt. Equation (A.26)

shows how the econometrician predicts the hidden state of St+1 with the given information

set Ft through the transition matrix given in (A.14). Combining (A.25) and (A.26), we get

λt + p− 1

2p− 1
=

λt−1φ (Rt|σH)

λt−1φ (Rt|σH) + (1− λt−1)φ (Rt|σL)
. (A.27)

Taking the derivative of (A.27) with respect to σH, we obtain the following:

1

2p− 1

∂λt
∂σH

=
∂ λt−1φ(Rt|σH)
λt−1φ(Rt|σH)+(1−λt−1)φ(Rt|σL)

∂λt−1

∂λt−1
∂σH

+
∂ λφ(Rt|σH)
λφ(Rt|σH)+(1−λ)φ(Rt|σL)

∂φ (Rt|σH)

∂φ (Rt|σH)

∂σH
.(A.28)

To determine the sign of each component in RHS of (A.28), we use the following properties:

∂ λm
λm+(1−λ)n

∂λ
=

mn

(λm+ (1− λ)n)2
> 0 (A.29)

∂ λm
λm+(1−λ)n

∂m
=

λ(1− λ)n

(λm+ (1− λ)n)2
> 0 (A.30)

for m,n > 0 and λ ∈ (0, 1). Further, using the properties of ∂φ(x|σ)
∂σ

= φ(x|σ)
(
− 1
σ

+ x2

σ3

)
and
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φ (x|σ) = φ (−x|σ), we have that

∂φ (σH|σH)

∂σH
= φ(σH|σH)

(
− 1

σH
+
σ2
H

σ3
H

)
= 0

∂φ (σL|σH)

∂σH
= φ(σL|σH)

(
− 1

σH
+
σ2
L

σ3
H

)
< 0,

implying

∂φ (Rt|σH)

∂σH
≤ 0 (A.31)

for every possible realization of Rt from {−σH,−σL, σL, σH}. With the assumption that
∂λt−1

∂σH
≤ 0, inequalities of (A.29), (A.30), and (A.31) ensure that RHS of (A.28) is non-

positive. Hence, with p > 1/2 as assumed in (A.15), it follows that ∂λt
∂σH
≤ 0. Combining

(A.24) with this finding, we conclude that

∂λt−1
∂σH

≤ 0, (A.32)

for every possible information set of Ft−1.
Recall that we want to show that (A.21) is strictly negative. Finally, combining (A.22),

(A.23), and (A.31), we conclude that

E
[
∂ log (L (Rt|σH))

∂σH
|Ft−1

]
< −δ, (A.33)

where

δ = (1− p)2 φ(σL|σH)

φ(σL|σL)

(
σ2
H − σ2

L

σ3
H

)
> 0, (A.34)

completing the proof that QML estimate of σ̂H in (A.19) will not converge to the true

parameter value.

Appendix B Explaining the moments of the momen-

tum strategy returns

In this appendix, we examine the extent to which we can match the unconditional sample

moments of momentum strategy returns and market excess returns based on the HMM

return generating process. For this purpose, we consider the following distributions for the
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pair of (εMOM,t, εMKT,t): (Normal, Normal), (Student-t, Student-t), (Normal, Student-t),

and (Student-t, Normal). We assume that the QML estimates of HMM parameters in Table

5 are the true parameters.

We generate a 1044 month-long time series of momentum strategy and market excess

returns based using monte carlo simulation and obtain their first four moments. We then

repeat this exercise 10,000 times to obtain the distribution of the first four momentums.Table

B.3 summarize the distribution of first four moments of momentum strategy returns and

market excess return obtained in this way for the four sets of distributions. Panel A of Table

B.3 gives the result for normal (εMOM,t) and normal (εMKT,t). We find that the skewness

(-2.43) and kurtosis (21.22) of momentum strategy returns, over our sample period 1044

months (1927:01-2013:12), fall outside of the 99% confidence interval of our HMM-implied

moments obtained by simulation. However, once we use Student-t (d.f.=5) distribution for

εMKT,t, those sample moments lie within the 95% confidence interval of our HMM-implied

moments, as shown in Panel C of Table B.3. If we use Student-t for both εMOM,t and εMKT,t,

those sample moments lie within 95% confidence intervals of our HMM-implied moments.

However, the intervals becomes too wide. When we compare Panel B with Panel C, the 95%

confidence intervals of skewness and kurtosis of momentum strategy returns are (-2.85,0.77)

and (7.98,43.38) when εMOM,t has Student-t distribution which are much wider than the

corresponding 95% confidence intervals of (-2.63,0.01) and (6.69,29.77) when εMOM,t has a

normal distribution.

Motivated by this finding, we estimate the HMM parameters assuming that εMOM,t is

drawn from a normal distribution and εMKT,t is drawn from a Student-t (d.f.=5) distribu-

tion. Results are reported in Table B.4. We find that the point estimates in Table B.4 are

reasonably close to those in Table 5. This is consistent with our findings, reported earlier,

that the QML estimates obtained by maximizing the wrong normal likelihood are reasonably

robust.
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Table B.1: Sensitivity of HMM QML Estimates to Deviations from Normality

Given the estimated parameters in Table 5 as true parameters, we generate momentum
returns and market excess returns by simulation using the return generating equations (2),
(3), and (4) when the residuals in the equations drawn from an i.i.d. bivariate Student-t
distribution with the d.f. (degrees of freedom) 10 and 5. Given the simulated sample over
1044 months, we estimate the parameters using quasi maximum likelihood, maximizing the
likelihood when residuals are drawn from an i.i.d. bivariate normal distribution. By repeating
this exercise 1,000 times, we construct the sampling distribution of estimated parameters,
the properties of which are reported in this table. Pr (·|·) represents the probability for
the same underlying state to be realized, Pr (St=st−1|St−1 =st−1). α, σMOM, and σMKT are
reported in percentage per month.

Hidden State

St = Calm(C) St = Turbulent(T )

Para- quantile quantile

meter true mean 10% 50% 90% true mean 10% 50% 90%
Panel A: When the true distribution is Student-t with d.f.=10

α 2.12 2.11 1.78 2.11 2.45 4.30 4.25 2.77 4.25 5.77
β0 0.37 0.36 0.22 0.36 0.49 −0.20 −0.19 −0.38 -0.19 0.00
β+ −0.54 −0.52 -0.73 −0.52 −0.34 −1.25 −1.22 −1.56 -1.23 −0.88
σMOM 4.22 4.08 3.91 4.08 4.26 11.59 11.68 10.85 11.67 12.57
µ 1.00 1.00 0.82 1.00 1.17 −0.49 −0.46 −1.20 -0.45 0.30
σMKT 3.60 3.49 3.34 3.49 3.64 8.94 8.99 8.32 8.98 9.69
Pr (·|·) 0.96 0.95 0.94 0.95 0.96 0.88 0.85 0.81 0.85 0.89

Panel B: When the true distribution is Student-t with d.f.=5

α 2.12 2.13 1.82 2.14 2.41 4.30 4.14 2.58 4.15 5.79
β0 0.37 0.35 0.22 0.35 0.49 −0.20 −0.15 −0.34 -0.16 0.04
β+ −0.54 −0.53 -0.72 −0.53 −0.33 −1.25 −1.15 −1.51 -1.15 −0.80
σMOM 4.22 3.79 3.58 3.79 3.98 11.59 12.04 10.82 11.90 13.22
µ 1.00 0.99 0.83 0.99 1.15 −0.49 −0.38 −1.16 -0.35 0.37
σMKT 3.60 3.24 3.07 3.24 3.42 8.94 9.16 8.23 9.10 10.09
Pr (·|·) 0.96 0.93 0.91 0.93 0.95 0.88 0.78 0.71 0.79 0.85
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Table B.2: Properties of Pr (St = T |Ft−1) constructed using misspecified (nor-
mal) likelihood

We examine the sensitivity of the ranking of Pr (St = T |Ft−1) constructed using misspec-
ified (normal) likelihood, where the joint process of the momentum strategy returns and
the market excess returns follow the hidden Markov model with the parameters in Ta-
ble 5 and residuals are drawn from t-distribution with d.f. (degree of freedom) 10 and 5.
Specifically, we simulate the joint process of momentum strategy returns and market excess
returns over 50,000 months and compute the tail risk measure Pr(St = T|Ft−1) for each
of simulated 50,000 months using the true likelihood (t-distribution) function and the mis-
specified likelihood (normal distribution) function. This table gives 3 (Low,Med,High) by
3 (Low,Med,High) matrix, summarizing the joint distribution of Pr(St = T|Ft−1) inferred
through the true likelihood (t-distribution) function and the misspecified likelihood (normal
distribution) function. We classify a month as Low (High) group if the inferred probability
of Pr(St = T|Ft−1) is below 30% (above 70%). Months with the inferred probability between
30% and 70% are classified as Med group. Number are reported in percentage.

Misspecified True Likelihood Misspecified True Likelihood
Likelihood of Student-t Likelihood of Student-t
of normal with d.f. 10 of normal with d.f. 5

Low Med High Low Med High

Low 73.8 0.0 0.8 Low 72.7 0.0 2.2
Med 0.0 15.3 0.8 Med 0.3 13.9 1.2
High 0.9 0.5 7.8 High 1.5 1.4 6.9
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Table B.3: Momentum and Market Excess Returns: Sample Moments vs HMM-implied Moments

We compare the HMM-implied moments of momentum strategy returns and market excess returns with the corresponding
moments in our sample. We generate εMOM,t and εMKT,t in our HMM specification of (2)) and (3)) using monte carlo
simulation from various combinations of Normal and Student-t distributions. Then, we construct a 1044 month-long time
series of momentum strategy and market excess returns using HMM specification and compute their first four moments. We
then repeat this exercise 10,000 times to obtain the distribution of the first four momentums.

Momentum Strategy Returns: RMOM,t Market Excess Returns: Re
MKT,t

Realized Quantiles (%) of Realized Quantiles (%) of
Moments Simulated Moments Moments Simulated Moments

0.5 2.5 50 97.5 99.5 0.5 2.5 50 97.5 99.5
Panel A: Normal (εMOM,t) and Normal (εMKT,t)

mean 1.18 0.47 0.65 1.14 1.61 1.75 0.64 0.18 0.28 0.65 0.99 1.09
std.dev 7.94 6.21 6.59 7.76 8.95 9.36 5.43 4.56 4.75 5.41 6.06 6.26
skewness -2.43 -1.46 -1.23 -0.59 0.00 0.19 0.16 -0.89 -0.76 -0.34 0.07 0.21
kurtosis 21.22 5.88 6.27 8.08 11.64 13.56 10.35 4.52 4.77 5.78 7.47 8.27

Panel B: Student-t (εMOM,t) and Student-t (εMKT,t)
mean 1.18 0.60 0.76 1.26 1.73 1.88 0.64 0.15 0.28 0.65 0.99 1.09
std.dev 7.94 6.17 6.55 7.79 9.27 9.83 5.43 4.48 4.68 5.38 6.28 6.70
skewness -2.43 -5.03 -2.85 -0.76 0.77 2.35 0.16 -4.16 -2.12 -0.33 1.40 3.46
kurtosis 21.22 7.23 7.98 12.51 43.48 96.63 10.35 5.81 6.41 10.09 38.77 95.11

Panel C: Normal (εMOM,t) and Student-t (εMKT,t)
mean 1.18 0.60 0.75 1.24 1.72 1.81 0.64 0.15 0.28 0.65 0.99 1.09
std.dev 7.94 6.14 6.57 7.82 9.10 9.64 5.43 4.48 4.68 5.38 6.28 6.70
skewness -2.43 -4.84 -2.63 -0.74 0.01 0.22 0.16 -4.16 -2.12 -0.33 1.40 3.46
kurtosis 21.22 6.24 6.69 9.31 29.77 69.22 10.35 5.81 6.41 10.09 38.77 95.11

Panel D: Student-t (εMOM,t) and Normal (εMKT,t)
mean 1.18 0.46 0.63 1.13 1.61 1.74 0.64 0.18 0.28 0.65 0.99 1.09
std.dev 7.94 6.14 6.52 7.74 9.10 9.61 5.43 4.56 4.75 5.41 6.06 6.26
skewness -2.43 -3.23 -1.91 -0.60 0.93 2.35 0.16 -0.89 -0.76 -0.34 0.07 0.21
kurtosis 21.22 6.90 7.50 10.91 30.80 61.93 10.35 4.52 4.77 5.78 7.47 8.27
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Table B.4: Quasi Maximum Likelihood Estimates of HMM Parameters when
εMOM,t has a Normal distribution and εMKT,t has a Student-t (d.f.=5) distri-
bution

We maximize the likelihood of data with the assumption that εMOM,t in (2) has a Normal
distribution and εMKT,t in (3) has a Student-t (d.f=5) distribution. The parameters are
estimated using data for the period 1927:01-2013:12. α, σMOM, and σMKT are reported in
percentage per month.

Hidden State
St = Calm(C) St = Turbulent(T )

Parameter estimates (t-stat) estimates (t-stat)

α (%) 1.95 (6.87) 4.05 (3.31)
β0 0.34 (3.43) −0.32 (−1.11)
β+ −0.46 (−2.57) −1.14 (−3.51)
σMOM (%) 4.31 (5.11) 11.02 (14.19)
µ 1.11 (8.76) −0.38 (−0.59)
σMKT (%) 4.04 (12.92) 8.36 (5.46)
Pr (St=st−1|St−1 =st−1) 0.98 (3.21) 0.94 (4.16)
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Appendix C Additional Tables

Table C.5: Option-like Feature of Momentum Returns and Market Condi-
tions

We partition the months in our sample into three groups: ‘High’ group is made up of months
when variable describing the market conditions (past market returns, realized volatility of
the market, or leverage of loser portfolio stocks) was in the top 20th percentile and the ‘Low’
group corresponds to months when the market condition variable was in the bottom 20th
percentile. The rest of the months are classified as ‘Medium’. For Panel A, the sample
period is 1929:07-2013:12. For Panel B and C, the sample period is 1927:07-2013:12. In
Panel A, we group the sample on the basis of cumulative market return during the 36
months preceding the month in which the momentum portfolios are formed. In Panel B, we
group the months based on the realized volatility of daily market returns over the previous
12 months. In Panel C, we use the breakpoints of the loser portfolio for grouping. We then
pool the months within each group and analyze the behavior of momentum strategy returns.
Specifically, we estimate equation (1) with ordinary least squares using momentum strategy
returns (RMOM) and the returns of winner and loser portfolio in excess of risk free return
(Re

WIN and Re
LOS) as LHS variables and report results in Panel A-1-i, B-1-i, and C-1-i. For

comparison, we report the estimates for the CAPM, without the exposure to the call option
on the market in (1), in Panel A-1-ii, B-1-ii, and C-1-ii. Then, we count the numbers of
large momentum losses worse than negative 20% within the groups and report those in Panel
A-2, B-2, and C-2. Finally, we compare the skewness of Re

p,t with that of estimated ε of (1)
in Panel A-3, B-3, and C-3. α is reported in percentage per month. The t-statistics are
computed using the heteroscedasticity-consistent covariance estimator by White (1980).

Continued on next page
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Table C.5 – continued from previous page

Panel B: Past 12 Months Realized Volatility of Market Returns

High Medium Low

LHS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS

B-1: Option-like features

B-1-i: Henriksson-Merton Estimates

α 2.90 1.07 -1.83 1.93 0.77 -1.16 2.40 1.38 -1.02
t(α) (2.96) (2.71) (-2.58) (5.73) (4.05) (-5.01) (4.55) (4.21) (-2.98)
β0 -0.59 0.94 1.52 0.16 1.35 1.19 0.54 1.55 1.02
t(β0) (-4.83) (13.78) (17.78) (1.72) (25.36) (18.24) (3.00) (14.91) (8.23)
β+ -0.91 -0.27 0.63 -0.25 -0.19 0.06 -0.63 -0.46 0.17
t(β+) (-3.23) (-2.14) (3.39) (-1.38) (-1.93) (0.51) (-1.92) (-2.39) (0.79)
Adj.R2(%) 0.49 0.74 0.83 0.00 0.78 0.68 0.03 0.73 0.57

B-1-ii: CAPM Estimates

α 0.12 0.23 0.11 1.48 0.43 -1.04 1.58 0.78 -0.80
t(α) (0.18) (0.82) (0.20) (6.69) (3.58) (-6.96) (4.87) (4.16) (-3.56)
β -1.10 0.78 1.88 0.05 1.27 1.22 0.19 1.30 1.11
t(β) (-8.43) (14.68) (21.61) (0.78) (41.31) (29.99) (1.83) (23.47) (15.56)
Adj.R2 0.45 0.73 0.82 0.00 0.78 0.68 0.01 0.72 0.57

B-2: Number of Momentum Losses worse than -20%

13 0 0

B-3: Conditional Skewness

LHS -1.88 -0.21 1.42 -0.17 -0.65 -0.23 0.00 -0.13 0.16
ε -0.62 -0.86 0.70 -0.11 0.33 0.41 -0.01 0.59 0.48

Continued on next page
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Table C.5 – continued from previous page

Panel C: Breakpoints of Loser Portfolio

Low Medium High

LHS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS

C-1: Option-like features

C-1-i: Henriksson-Merton Estimates

α 2.67 0.96 -1.71 2.79 1.21 -1.58 0.81 0.32 -0.50
t(α) (2.67) (2.35) (-2.38) (5.82) (6.23) (-4.50) (1.40) (0.84) (-1.51)
β0 -0.65 0.91 1.56 0.22 1.39 1.17 0.52 1.48 0.96
t(β0) (-5.46) (14.09) (17.98) (1.83) (25.31) (13.89) (2.96) (10.89) (13.27)
β+ -0.92 -0.29 0.63 -0.61 -0.35 0.26 -0.14 -0.09 0.05
t(β+) (-3.31) (-2.37) (3.34) (-2.07) (-3.18) (1.23) (-0.42) (-0.44) (0.27)
Adj.R2 0.50 0.70 0.83 0.03 0.80 0.67 0.16 0.81 0.75

C-1-ii: CAPM Estimates

α -0.07 0.10 0.16 1.76 0.62 -1.14 0.57 0.17 -0.40
t(α) (-0.09) (0.33) (0.31) (8.50) (5.77) (-7.58) (1.86) (0.76) (-2.50)
β -1.15 0.75 1.91 -0.08 1.22 1.30 0.45 1.43 0.98
t(β) (-9.05) (14.61) (22.14) (-0.95) (34.29) (20.93) (4.67) (25.29) (16.17)
Adj.R2 0.47 0.69 0.82 0.00 0.79 0.67 0.17 0.81 0.75

C-2: Number of Momentum Losses worse than -20%

12 1 0

C-3: Conditional Skewness

LHS -1.70 -0.02 1.44 -1.21 -0.73 0.50 0.04 -0.51 0.07
ε -0.39 0.06 0.75 -0.72 -0.05 0.69 -0.09 0.31 0.70
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