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I. Introduction

The cross-sectional properties of stock returns have attracted consid-
erable attention in recent empirical literature in financial economics.
One of the best-known studies, by Fama and French (1992), uncovers
the relations between firm characteristics such as book-to-market ratio
and firm size and stock returns, which appear to be inconsistent with
the standard capital asset pricing model (CAPM). Despite their empir-
ical success, these simple statistical relations have proved very hard to
rationalize, and their precise economic source remains a subject of
debate.'

We construct a dynamic stochastic general equilibrium one-factor
model in which firms differ in characteristics such as size, book value,
investment, and productivity, among others. It establishes an explicit
economic relation between firm-level characteristics and stock returns.
The simple structure of our model provides a parsimonious description
of the firm-level returns and makes it a natural benchmark for inter-
preting many empirical regularities.

First, we show that our one-factor equilibrium model can still capture
the ability of book-to-market and firm value to describe the cross section
of stock returns. These relations can subsist after one controls for typical
empirical estimates of conditional market beta. Second, we find that,
in our model, the cross-sectional dispersion in individual stock returns
is related to the aggregate stock market volatility and business cycle
conditions. Third, we show that the size and book-to-market return
premia are inherently conditional in their nature and likely
countercyclical.

Our theoretical approach builds on the work of Berk et al. (1999),
who construct a partial equilibrium model also based on the ideas of
time-varying risks to explain cross-sectional variations of stock returns.
However, our work differs along several important dimensions. First,
ours is a single-factor model in which the conditional CAPM holds,
whereas the model of Berk et al. introduces a second risk factor in
addition to the market portfolio. The simple structure of our model
allows us to derive an explicit link between the beta (and hence returns)
and firm characteristics such as size and book-to-market. Instead of
appealing to multiple sources of risk, we emphasize the role of beta
mismeasurement in generating the observed cross-sectional relations
between the Fama and French factors and stock returns. Second, by

! Campbell, Lo, and MacKinlay (1997), Cochrane (1999), and Campbell (2000) review
the related literature. Various competing interpretations of observed empirical regularities
include, among others, Lo and MacKinlay (1988), Fama and French (1993, 1995, 1996),
Lakonishok, Shleifer, and Vishny (1994), Berk (1995), Kothari, Shanken, and Sloan (1995),
MacKinlay (1995), Jagannathan and Wang (1996), Berk, Green, and Naik (1999), Liew
and Vassalou (2000), and Lettau and Ludvigson (2001).
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explicitly modeling the production and investment decisions of the
firms, we are able to integrate our cross-sectional analysis into a general
equilibrium model that allows us to present a self-consistent account of
the business cycle properties of returns.

Our work belongs to a growing literature that explores the implica-
tions of production and investment on the cross section of returns. In
addition to Berk et al. (1999), recent examples include Cochrane
(1996), Gomes, Yaron, and Zhang (2002), and Zhang (2002). More
broadly, this paper is also related to a variety of recent papers that focus
on the asset pricing implications of production and investment in the
time series. Examples of this line of research include Bossaerts and
Green (1989), Cochrane (1991), Naik (1994), Rouwenhorst (1995),
Coleman (1997), Jermann (1998), and Kogan (2000, 2001). To the best
of our knowledge, however, this is the first work aiming directly at ex-
plaining the cross-sectional variations of stock returns from a structural
general equilibrium perspective.

II. The Model

We develop a general equilibrium model with heterogeneous firms.
There are two types of agents: a single representative household and a
large number of competitive firms producing a single consumption

good.

A.  Production Sector

Production of the consumption good takes place in basic productive
units, which we label projects. New projects are continuously arriving in
the economy. Projects are owned by firms, and each firm operates a
number of individual projects of different characteristics.

Existing Projects

Let 1, denote the set of all projects existing at time ¢, and let ¢ be the
index of an individual project. Projects expire randomly according to
an idiosyncratic Poisson process with common hazard rate 6 (we define
the arrival of new projects below). Existing projects have two individual
features: productivity and scale.

Productivity is driven by a component common to all projects, x, and
a project-specific element, €,. We assume that x, follows the linear mean-
reverting process,

dx, = —0.(x,— x)dt + 0.dB,, 1)
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and that ¢, is driven by a square root process,
de, = 0.(1 — €;)dt + 0,e,dB, (2)

where B, and B, are standard Brownian motions.” We assume that the
idiosyncratic productivity shocks are independent of the economywide
productivity shock, that is, dB,dB;, = 0 for all . We make a further
assumption that if projects i and j are owned by the same firm (see
below), dB,dB, = dt; otherwise we set dB,dB;, = 0.

While the specific nature of processes (1) and (2) is merely conve-
nient, mean reversion is important. At the aggregate level, it is necessary
to ensure that the growth rate of output does not explode, a result
consistent with standard findings in the growth literature (Kaldor 1961).
At the firm level, mean reversion is required to obtain a stationary
distribution of firms in equilibrium and is consistent with the evidence
suggesting that growth rates decline with size and age (Evans 1987; Hall
1987).

The scale of a project, denoted k, is set at the time of creation, and
it remains fixed throughout the life of the project. Given its scale and
productivity, each project generates a flow of output (cash flows) at rate
exp (x,)e; k. We compute the net present value of the future stream of
cash flows associated with the project, P(x, €, k;). Let M,,,  denote the
pricing kernel, which determines prices of all financial assets. If an asset
pays a flow of dividends at rate Z,, its time ¢ price is given by

f M,,,ﬂzmch}.
0

PrOPOSITION 1. Project valuation—The value of an existing project ¢
is given by

L)

Px, €, k) = Etlf edM/,H.v(ex”’\fi,ﬁxki)d%
0

= klp(x) + plx)(e, — D, (3)
where p(x,) and Z)(xt) are defined as

J g&Mt,erx”"dA} (4)
0

2 The process in (1) is chosen to possess a stationary long-run distribution with constant
instantaneous volatility. The advantage of (2) is that the conditional expectation of ¢, is
an exponential function of time and a linear function of the initial value ¢,,, which facilitates
computation of individual stock prices below. An additional advantage of this process is
that its unconditional mean is independent of 6, and o,, which simplifies the calibration.

px) = E,
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.f e“””%4u+x““d%. (5)
0
Proof. See Appendix A.

In (3), e™"¢, .k, is the cash flow rate of project i, which is valued
using the pricing kernel M, , . The factor ¢* captures the fact that
existing projects expire randomly at rate 6. The present value p(x) rep-
resents the component of the value of an existing project attributable
to the level of aggregate productivity, and Z)(x) captures the sensitivity
of the value of the project to the idiosyncratic component of its pro-
ductivity. Note that p(x) and p(x) differ only in the rate of discount,
which implies that 27(96) < p(x), for all x. In addition, as §, = 0, we have
that %(x) = p(x) and P(x, €, k;) = p(x)ek;

and

plx) = E,

New Projects

At the aggregate level, new potential projects arrive continuously. These
projects can be adopted at time ¢ with an investment cost of ¢,k,, where
e, is the unit cost of adoption. If the project is not adopted, it disappears.

We assume that during any period [¢, ¢ + di], multiple projects arrive
with various values of their unit cost ¢,. For simplicity, we are assuming
that the arrival rate of new projects is independent of project unit cost.
The production scale of all new projects with unit cost between e and
e+ dearriving during the time interval [¢, ¢ + di] adds up to h,dedt, where
h, determines the instantaneous arrival rate of new projects.

We make two additional simplifying assumptions regarding the scale
and productivity of these new projects. First, all projects of the same
vintage have the same scale, k,. This scale is chosen to ensure that the
number of projects per firm has a stationary distribution (see App. B
for details). Second, the initial productivity of a new project is drawn
from the long-run distribution implied by (2), but only after the project
is adopted. Given these assumptions, the value of a new project at time
¢t immediately before the project is adopted is given by

E[P(x, €, k)|x] = k;p(x)

since Ele;|x,] = 1.

Firms

Projects are owned by infinitely lived firms. We assume that the set of
firms F is exogenously fixed and let fbe the index of an individual firm.
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Each firm owns a finite set of individual projects, 1,, which changes over
time as new projects get adopted and existing projects expire.

Firms are financed entirely by equity, and outstanding equity of each
firm is normalized to one share. We denote the firm’s fstock price at
time ¢ by V. Stocks represent claims on the dividends paid by firms to
shareholders, and we assume that the dividend equals the firm’s output
net of investment costs. We assume that firms are competitive and their
objective is to maximize the market value of their equity.

Regardless of its unit cost, each new project is allocated to a randomly
chosen firm. Hence, all firms have an equal probability of receiving a
new project at any point in time. Assuming that all firms are equally
likely to receive new projects allows for tractability, but it is not crucial.
Qualitatively, we need firm growth to be negatively related to size, a fact
well documented in the data.

While firms do not control the scale or productivity of their projects,
they make investment decisions by selecting which of these new projects
to adopt. If the firm decides to invest in a new project, it must incur
the required investment cost, which in turn entitles it to the permanent
ownership of the project. These investment decisions are irreversible,
and investment cost cannot be recovered at a later date.

For the firm, the arrival rate of new projects is independent of its
own past investment decisions. Thus the decision to accept or reject a
specific project has no effect on the individual firm’s future investment
opportunities and therefore can be made using a standard net present
value rule. Given that the present value of future cash flows from a new
project at time ¢ equals k;p(x,), it follows that new projects are adopted
if and only if their unit investment cost is below p(x,):

e, < p(x,). (6)

Hence, the decision to adopt new projects can be summarized by a
function of aggregate productivity, x, Figure 1 illustrates this.

The value of the firm, V,, can be viewed as the sum of the present
value of output from existing projects, V, plus the present value of
dividends (output net of investment) from future projects, V;. With the
terminology from Berk et al. (1999), V/ represents the value of assels
in place, defined as

= 2 Py € k) = 20 klpGe) + plx)(e, — 1), (7)
ielp el
whereas V7 = V, — V can be interpreted as the value of growth options.
For future use we also define the book value of a firm as the sum of
book values of the firm’s (active) individual projects, B, = X,_, ¢k, and
the book value of a project is defined as the associated investment cost
ek,
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Adopted Rejected

p(z:) €

F1G6. 1.—Arrival of new projects. This figure illustrates the project arrival rate 4, as a
function of its unit cost e. The function p(x,) denotes the component of the value of an
existing project attributable to the level of aggregate productivity.

Aggregation

Let [4, *di denote the aggregation operator over projects, and define the
aggregate scale of production in the economy, K, as

K, = j kdi.
4

It follows that aggregate output, Y, is given by

Y, = f exp (x)ke;di = exp (x)K, (8)
q

where the second equality follows from the fact that the project scale,
k, is fixed at time of creation and is independent of idiosyncratic pro-
ductivity, €;,, and the law of large numbers applied to ¢;’s, which are
independently and identically distributed with unit mean.” Equation (8)

*Feldman and Gilles (1985) formalize the law of large numbers in economies with
countably infinite numbers of agents by aggregating with respect to a finitely additive
measure over the set of agents. Judd (1985) demonstrates that a measure and the cor-
responding law of large numbers can be meaningfully introduced for economies with a
continuum of agents.
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is then consistent with our interpretation of x, as the aggregate pro-
ductivity shock.

Since active projects expire at rate §, whereas new projects are adopted
only if their creation cost is below p(x,), the total scale of projects in

the economy evolves according to
()
f htd%dt. 9)
0

Balanced growth requires that the aggregate arrival rate, %, be propor-
tional to the aggregate scale of existing projects, K,. Formally, we assume
that &, = zK, where the parameter z governs the quality of the invest-
ment opportunity set.

Given our assumptions about k, (9) implies that the change in the
total scale of production is given by

dK, = —Kdt + 2K p(x)dt (10)

dK, = —8K,dt +

and the amount of resources used in the creation of new projects, I,
equals

p(x;)
I =1Ix) = J ezKde = 52K [p(x)]% 11)

0

The aggregate dividend of firms equals the aggregate output net of
aggregate investment and is given by

D, =Y, — I = {e"— yz[p(x)]*}K. (12)

Note that since p(x) is increasing in x, this implies that more expensive
projects are adopted only in good times, when «x, is high. This rising
cost of investment is then similar to the result obtained in a standard
convex adjustment cost model. Together, our assumptions about pro-
ductivity and costs guarantee that individual investment decisions can
be aggregated into a linear stochastic growth model with adjustment
costs. This provides a tractable setting for addressing the behavior of
the cross section of returns.

The production environment in our model differs from that in Berk
et al. (1999) in a number of critical aspects. First, Berk et al. simply
assume that cash flows of existing projects are independently distributed
over time and have a constant beta with respect to an exogenous sto-
chastic pricing kernel that is driven by serially independent shocks.
Second, in their model, exogenous fluctuations in real interest rates are
driven by a separate first-order stationary Markov process, creating an
additional source of risk. As a consequence, the value of existing assets
is exposed to two risk factors: while the capital gains component of
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returns is related to fluctuations in interest rates, cash flows from existing
projects covary with the shocks to the pricing kernel. Moreover, the
present value of future projects, that is, the value of growth options,
depends only on the current level of the interest rate, since unexpected
changes in the pricing kernel are independently and identically dis-
tributed. Thus, while the value of existing assets is exposed to both
sources of risk, the value of growth options has a positive loading only
on the level of the interest rate.

B.  Households

The economy is populated by identical competitive households, which
derive utility from the consumption flow of the single good, C. The
entire population can then be modeled as a single representative house-
hold, and we assume that this household has standard time-separable

iso-elastic preferences,
, w
N g
L=vJ,

where A is the subjective rate of discount and + is the coefficient of
relative risk aversion. Households do not work and derive income from
accumulated wealth, W,. We assume that there exists a complete set of
financial markets and there are no frictions and no constraints on short
sales or borrowing. The term M, ., is the unique equilibrium pricing
kernel, which determines prices of all financial assets.

The representative household maximizes the expected utility of con-
sumption (13), taking the prices of financial assets as given. In a com-
plete financial market, the budget constraint is given by

E, , (13)

E,

f M,,H;;Cmdli <W. (14)
0

Optimality conditions imply a well-known relation between the con-
sumption policy and the pricing kernel:

¢\
M., =e» (C_/) . (15)
t+s

$

C.  The Competitive Equilibrium

With the description of the economic environment complete, we are
now in a position to state the definition of the competitive equilibrium.
DEFINITION 1. Competitive equilibrium.—A competitive equilibrium is
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summarized by the pricing kernel M, , the optimal household con-
sumption policy C, and firm investment policy, described by p(x,), such
that the following conditions hold: (a) Optimization: (i) With the equi-
librium asset prices taken as given, households maximize their expected
utility (13), subject to the budget constraint (14). (ii) With the equilib-
rium asset prices taken as given, firms select new projects according to
(6) and (4). (b) Market clearing: Representative household consump-
tion equals the aggregate dividend, given by (12):

C =D, (16)

The competitive equilibrium has a very convenient structure. Since
the cross-sectional distribution of firms has no impact on aggregate
quantities, we characterize the optimal consumption and investment
policies first and use them to compute the aggregate stock market value.
Given the aggregate quantities, we then express explicitly the individual
firm prices and returns.

Proposition 2 establishes that the optimal policies for consumption
and investment can be characterized by a system of one differential
equation and one algebraic equation.

PROPOSITION 2. Equilibrium allocations—The competitive equilibrium
is characterized by the optimal investment policy, described by p(x) in
(6), and consumption policy, C(x, K), which satisfy

Clx, K) = {e* = g2l p)I*1K (17)
and
p) = le" = 32 pI* 19 (), (18)
where the function ¢(x) satisfies
el = el p)l*) 7 = I+ (1= )0 + yzpId() — Ae()]  (19)
and _{[] is the infinitesimal generator of the diffusion process x,:
g = —0,x = Dg'x) + 307g" (). (20)
Proof. See Appendix A.
This concept of general equilibrium is also one of the key novelties
in our analysis relative to that of Berk et al. (1999), who instead proceed

by keeping the pricing kernel, M, , , entirely exogenous, thus separating
the optimal investment decisions from the consumption allocation.
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D.  Asset Prices

With the optimal allocations computed, we now characterize the asset
prices in the economy, including the risk-free interest rate and both the
aggregate and firm-level stock prices.

Aggregate Prices

The following proposition summarizes the results for the equilibrium
values of the risk-free rate, 7, and the aggregate stock market value,
V.

ProrosiTION 3. Equilibrium asset prices.—The instantaneous risk-free
interest rate is determined by

E[M, 0 — 1] "/{[C(xp K)l
= ———=\+ o]l +ty———
" ot A+ ylzp(x) — 8] + v G,
2
,|0In C(x, K,
= 97y + Dol ——=—" . (21)
xi
The aggregate stock market value, V, can be computed as
Vi =E, J Mt,t+.th+xd%
0
- R
= El e)\s( l) Cl Ad%
@)
= {e" = 22 pe )PV (K, (22)

where the function ¥/(x) satisfies the differential equation

M) = {e* = gzl pl*) 7 + (1 = Plzp(x) — 81 () + AW ()],

and _{[] is defined as in (20).

Proof. See Appendix A.

While these exact conditions are somewhat technical, the intuition
behind them is quite simple. The instantaneous risk-free interest rate
is completely determined by the equilibrium consumption process of
the representative household and its implied properties for the pricing
kernel. The aggregate stock market value represents a claim on the
future stream of aggregate dividends, D, paid out by firms, which in
equilibrium must equal aggregate consumption, C,
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Finally, given (22), we can also define the process for cumulative
aggregate stock returns as

dR, dV+ Ddt
. v

R

(23)

In addition to the definition above, the value of the stock market can
also be viewed as a sum of two components. The first is the value of
assets in place: the present value of output from existing projects. It is
given by the expression

[
F

J [E kz[p(xz) + ij(xt)(eit - 1)]]df

ity

V['a

= ,b(xt)f kidi+i?(xt)J ke, — Ddi

= p(x)K, (24)

where the last equality follows from applying the law of large numbers
to €,. The difference between the aggregate market value and the value
of assets in place is the value of aggregate growth options, defined as
the present value of dividends from all projects to be adopted in the
future. By definition, the value of aggregate growth options equals

V=V Ve (25)

Firm-Level Stock Prices

Valuation of individual stocks is straightforward once the aggregate mar-
ket value is computed. First, the value of a firm’s stock is the sum of
the value of assets in place for the firm, (7), and the value of growth
options. Given our assumption that new projects are distributed ran-
domly across all firms with equal probabilities, all firms will derive the
same value from growth options. Hence, the value of growth options
for each firm, V, equals

- 1
Vo=V =
i e 1df

|4 (26)
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We obtain the total value of the firm, V,, as

V= 2 kilpe)(e, = 1) + plx)] + V. (27)
ity
By relating individual firm value to market aggregates, the decom-
position (27) implies that the instantaneous market betas of individual
stock returns can also be expressed as a weighted average of market
betas of three economywide variables, p, }1, and V,". Proposition 4 formally
establishes this property.
PrOPOSITION 4. Market betas of individual stocks.—Firm market betas
are described by

~ Ve ~ 1 K, ~
By = Bi+— (B = B + " (B = BY), 28
) Wz( ) 20 ( ) (28)
where
Kj't = E k;
i€l
and
g = dlog p,/ox Ba . alogj;t/ax ., OlogV/dx (29)
t dlog V,/ox’ T dlog V/ox’ T dlog V/ox"

Proof. Since the market beta of a portfolio of assets is a value-weighted
average of betas of its individual components, the expression for the
value of the firm (27) implies that

vy |4
.= |1 __ﬁ) {f+—£ ;
Bf ( VL Bf V[’/B

Vzo P V/U o
= (1 - ‘é) (1= m,)B; + m,pB1 + —VLB“
Jt It

where

SK(K) KL
ViV Vi p(x)

Simple manipulation then yields (28). Q.E.D.

T

Stock Returns and Firm Characteristics

By definition, 8 is the market risk of aggregate assets in place, (24),
and f’ is the market risk of aggregate growth options, (25). Potential
future projects are valued as growth options because they have a positive
net present value; that is, new potential projects are adopted only if
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p(x) —e>0. Since the volatility of p(x) — e exceeds the volatility of
p(x), this leverage effect will likely imply that 3°> 3“. In this respect, our
model differs from that of Berk et al. (1999) in that the risk of growth
options in their model is relatively low, being entirely determined by
the exogenous process for the interest rate.”

At the level of individual projects, according to the interpretation of

the present values p(x) and Z)(x,), B3“ describes the component of sys-
tematic risk that is common to all existing projects, and 3 captures the
cross-sectional differences between projects due to the idiosyncratic
component of their productivity. The relation between these two ag-
gregates is less immediate. By definition, p(x,) and p(x,) differ only with
respect to the discount rate in the present value relations (4) and (5).
Since the “effective duration” of the cash flows defining p(x,) exceeds
that of i)(x,), the relation between 3“ and 3“ depends on the equilibrium
term premium; specifically, a positive term premium will tend to raise
B¢ relative to B8“ In the calibrated version of our model, 3¢ actually
exceeds (¢, as shown in figure 2. This implies that more productive
projects, that is, those with higher values of ¢,, have lower systematic
risk in our model.
_ Proposition 4 shows that the weights on the “aggregate” betas, G,
B¢, and B/, depend on the economywide variables p(x,) and V,”and, more
important, on firm-specific characteristics such as the size, or value, of
the firm, V), and the ratio of the firm’s production scale to its market
value, K,/ V,.

The second term in (28) creates an inverse relation between size and
beta, as the weight on the beta of growth options, 8/, depends on the
value of the firm’s growth options relative to its total market value. Firms
with a small production scale, K, derive most of their value from growth
options, and their betas are close to 8. Since all firms in our economy
have identical growth options, the cross-sectional dispersion of betas
due to the loading on (3 is captured entirely by the size variable V.
Large firms, on the other hand, derive a larger proportion of their value
from assets in place; therefore, their betas are close to a weighted average
of B/ and B;. While this “size effect” is a result of our assumption about
the distribution of growth options across firms, the effect will survive as
long as V'V, differs across firms, which requires only that growth options
are less than proportional to size. Given the observed negative relation
between firm size and growth (Evans 1987; Hall 1987), this seems quite
plausible.

The last term in (28) shows that a part of the cross-sectional dispersion
of market betas is also related to the firm-specific ratio of the scale of
production to the market value, Kﬁ/ V, to a certain extent similar to

*See Berk et al. (1999, n. 7) for a detailed discussion of this issue.
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the empirical measure of the firm’s book-to-market ratio.” To see the
intuition behind this result, consider two firms, 1 and 2, with the same
market value. Since the value of growth options of these two firms is
also identical, differences in their market risk are due only to the dis-
tribution of cash flows from the firms’ existing projects. For simplicity,
assume that each firm has a single active project. Let firm 1’s project
have a larger scale, so that firm 1 has a higher ratio K,/ V. Because the
market value of a project is increasing in its idiosyncratic productivity,
firm 1’s project must have lower productivity than firm 2’s project. As
we have discussed above, more productive projects in our model have
lower systematic risk; hence firm 2 should have a lower market beta
than firm 1. This argument shows that in our model the book-to-market
ratio measures the systematic risk of a firm’s returns because of its
relation to the productivity and systematic risk of a firm’s existing
projects.

In the argument above, we considered single-project firms. We show
below that, more generally, the book-to-market ratio in our model is
negatively related to firm profitability, defined as the ratio of a firm’s
output to its book value. See Section IVC below for more discussion on
this relation.

Although the book-to-market ratio is commonly interpreted as an
empirical proxy for the firm’s growth options, the preceding discussion
shows that this need not be the case. In our model, size serves as a
measure of a firm’s growth options relative to its total market value,
and the book-to-market ratio captures the risk of the firm’s assets in
place. Berk et al. (1999) point out a similar effect in the context of their
model, even though the structure of their economy is substantially dif-
ferent from ours.

Because of the single-factor nature of our model, the cross-sectional
distribution of expected returns is determined entirely by the distri-
bution of market betas, since returns on the aggregate stock market are
instantaneously perfectly correlated with the consumption process of
the representative household (and hence the pricing kernel; e.g., Bree-
den [1979]). Thus, if conditional market betas were measured with
perfect precision, no other variable would contain additional infor-
mation about the cross section of returns. However, equation (28) im-
plies that if for any reason market betas were mismeasured (e.g., because
the market portfolio is not correctly specified), then firm-specific vari-
ables such as firm size and book-to-market ratios could appear to predict
the cross-sectional distribution of expected stock returns simply because
they are related to the true conditional betas. In Section IV we generate

® The ratio K,/ V, can also be approximated by other accounting variables, e.g., by the
earnings-to-price ratio.
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an example within our artificial economy of how mismeasurement of
betas can lead to a significant role of firm characteristics as predictors
of returns.

III.  Aggregate Stock Returns

In this section we evaluate our model’s ability to reproduce a few key
features of aggregate data on returns. While this is not our main ob-
jective, it seems appropriate to ensure that the model’s implications for
the time series of stock returns are reasonable before examining its
cross-sectional properties. To guarantee this, we restrict the values of
the seven aggregate-level parameters, v, A, 6, %, 0,, 0,, and z, to approx-
imately match seven key unconditional moments: the first two uncon-
ditional moments of stock returns, the risk-free rate and aggregate con-
sumption growth, and the average level of the investment-to-output
ratio. We then examine the implications of these choices for a number
of conditional moments of asset returns.

A.  Unconditional Moments

The values of the model parameters used in the simulation are as follows:
the risk aversion coefficient, v, 15; the time preference parameter, A,
0.01; the rate of project expiration, 6, 0.04; the long-run mean of the
aggregate productivity variable, x, log(0.01); the quality of investment
opportunities, z, 0.50; the volatility of the productivity variable, g,, 0.08;
the rate of mean reversion of the productivity variable, 6,, 0.275; the
rate of mean reversion of the idiosyncratic productivity component,
0., 0.50; and the volatility of the idiosyncratic productivity component,
0., 2.00. Table 1 compares the implied moments of the key aggregate
variables in the model with corresponding empirical estimates. We re-
port both population moments, estimated by simulating a 300,000-
month time series, and sample moments based on 200 simulations each
with 70 years of monthly data. For the sample moments, in addition to
point estimates and standard errors, we also report 95 percent confi-
dence intervals based on empirical distribution functions from 200
simulations.

Essentially, our model captures the historical level and the volatility
of the equity premium, while maintaining plausible values for the first
two moments of the risk-free rate. Given the simple time-separable con-
stant relative risk aversion utility and volatility in consumption growth
of about 3 percent, this is possible only with a sizable degree of risk
aversion (15). Since instantaneous consumption growth and aggregate
stock returns are perfectly correlated in our single-factor model, this
implies that the instantaneous Sharpe ratio of returns is approximately
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TABLE 1
MOMENTS OF KEY AGGREGATE VARIABLES
DaTa PorurATION SAMPLE
Standard Standard Standard
Mean Deviation Mean  Deviation Mean Deviation
(1) (2) (3) (4) (5) (6)
(Ci/C)—1 1.72 3.28 .85 3.22 .84 3.06
(.28) (.26)
[.22 1.33] [2.56 3.50]
T, 1.80 3.00 1.30 4.33 1.34 3.98
(1.30) (.85)
[—.63 4.23] [2.55 5.73]
log R, — log 1, 6.00 18.0 6.00 14.34 5.89 15.28
(1.32) (1.73)
[2.97 8.13] [11.80 18.58]
1/Y, .19 .23 .23
(.02)
[.19 .26]

NoTe.—This table reports unconditional means and standard deviations of consumption growth ([C,,/C] — 1), real
interest rate (r,), equity premium (log R, —logr,), and the mean of the investment-to-output ratio (//Y,). The numbers
reported in cols. 1 and 2 are taken from Campbell, Lo, and MacKinlay (1997), except for the mean of the investment-
to-output ratio, which equals the postwar average for the U.S. economy. The numbers reported in cols. 3 and 4 are
population moments. These statistics are computed on the basis of 300,000 months of simulated data. Cols. 5 and 6
report the finite-sample properties of the corresponding statistics. We simulate 70-year-long monthly data sets, a length
comparable to the sample length typically used in empirical research. Simulation is repeated 200 times, and the relevant
statistics are computed for every simulation. Then we report the averages across the 200 replications. The numbers in
parentheses are standard deviations across these 200 simulations, and the two numbers in brackets are 2.5th and 97.5th
percentiles of the resulting empirical distribution, respectively. All numbers except those in the last row are in
percentages.

equal to 15 x 0.03 = 0.45, which is close to its historical average. Figure
2 shows that the Sharpe ratio of the aggregate stock market returns in
our model is also countercyclical, which is consistent with empirical
facts.

Given our focus on the cross-sectional properties of returns, this seems
to be an acceptable approximation. Despite the apparent success, how-
ever, it is unlikely that the model provides a precise account of the exact
mechanism behind the empirical properties of the aggregate stock re-
turns. Although our model generates a plausible level of stock market
volatility, the time-separable nature of preferences implies that most of
this variation is due to changes in the risk-free rate.” In addition, the
joint determination of consumption and outputin our production-based
asset pricing model implies a negative autocorrelation for consumption
growth (rising from —0.02 after one quarter to —0.14 after four years),
somewhat at odds with its (near) random walk pattern observed in the
data.

¢ Campbell (2003) discusses alternative preference specifications that can overcome this
difficulty.
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B.  Conditional Moments

Proposition 4 shows that the cross-sectional distribution of firm betas is
determined by a number of aggregate variables. To the extent that betas
are linked to returns, this also implies a link between firm characteristics
and stock returns. We now investigate our model’s implications for these
two relations.

Theoretically, our model implies perfect correlation between instan-
taneous stock returns and the pricing kernel. As a result, the aggregate
market portfolio is instantaneously mean-variance efficient, and asset
returns are characterized by a conditional CAPM. Quantitatively, we find
that the unconditional correlation between the pricing kernel and
monthly market returns is —.98, whereas the conditional correlation
between the two is, effectively, —1. Thus, even at the monthly frequency,
a conditional CAPM is highly accurate. In this respect our environment
differs crucially from that in Berk et al. (1999) since, in their model,
stock returns cannot be described using market returns as a single risk
factor. This allows them to have variables, other than market beta, play-
ing an independent role in predicting expected returns.

Figure 2 shows the behavior of the key economic quantities that de-
termine firm-level betas against the state variable x. As expected, the
optimal investment policy, (x), which, in equilibrium, equals the present
value of cash flows from a new project of unit size, V7K, is increasing
in x. Similarly, the market value per unit scale of a typical project,
V/K, is also increasing in x. Given our calibration, assets in place account
for about 75-80 percent of the total stock market value. This fraction
is countercyclical since more new projects are adopted in good times.
Finally, figure 2f confirms that the beta of growth options, 8°, is higher
than that of assets in place, 3% which, from (28), guarantees a negative
(partial) correlation between firm size and firm beta.

Finally, it seems natural to examine the implications of our model
for the relation between returns and book-to-market at the aggregate
level before investigating this link in the cross section. Table 2 compares
our results to those in Pontiff and Schall (1998). Panel A reports the
means, standard deviations, and one- to five-year autocorrelations of the
dividend yield and book-to-market ratio. While both means and standard
deviations seem very similar, the book-to-market ratio is more persistent
in our model. Panel B examines the performance of the book-to-market
ratio as a predictor of stock market returns at monthly and annual
frequencies. In both cases, our model produces somewhat lower, but
statistically comparable, values for the slopes and the adjusted R*’s.



TABLE 2

BOOK-TO-MARKET AS A PREDICTOR OF MARKET RETURNS

A. MEANS, STANDARD DEVIATIONS, AND AUTOCORRELATIONS

Standard
Source Mean Deviation 1 Year 2 Years 3 Years 4 Years 5 Years
Dividend yield Data 4.267 1.7 .60 .36 .26 .23 .25
Model 6.407 .97 .69 46 31 .19 11
(.321) (.22) (.08) (.14) (.17) (.18) (.18)
[5.789 7.084] [.61 1.45] [.51 .82] [.17 .70] [—.05.61] [—.16 .51] [—.22 .45]
Book-to-market Data .668 .23 .68 43 .23 .08 .00
Model .584 .19 .88 .80 73 .68 .64
(.052) (.04) (.03) (.07) (.09) (.12) (.13)
[.495 .707] [.12 .28] [.81 .93] [.63 .89] [.48 .86] [.38 .84] [.31 .83]
B. REGRESSIONS ON BOOK-TO-MARKET
DaTa MobEeL
Slope Adjusted R* Slope Adjusted R*
Monthly 3.02 .01 1.75 .00
(.79) (.00)
[.68 3.65] [.00 .01]
Annual 42.18 .16 19.88 .04
(10.46) (.04)
[6.57 46.09] [.00 .14]

NoTe.—This table examines the model’s ability to match the empirical regularities in Pontiff and Schall (1998). Panel A reports means, standard deviations, and autocor-
relations of dividend yield and book-to-market ratio, both from historical data and from simulations. The numbers in data rows are taken from the last two rows in panel A
of table 1 of Pontiff and Schall’s study. Panel B reports the properties of the regression of value-weighted market returns, both at a monthly and annual frequency, on one-
period-lagged book-to-market. The columns labeled Data are taken from table 2 of Pontiff and Schall’s study. In both panels, the numbers labeled Model report the statistics
from 200 simulations, each of which has the same length as that of the data set used in Pontiff and Schall’s study. The numbers in parentheses are standard deviations across
200 simulations, and the two numbers in brackets are 2.5th and 97.5th percentiles, respectively. All numbers, except autocorrelations and adjusted R”’s, are in percentages.
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IV. The Cross Section of Stock Returns

This section establishes our key quantitative results. After we outline
our numerical procedure in subsections A and B, subsection C examines
the model’s implications for the relation between firm characteristics
and stock returns. Subsection D concludes with a description of the
conditional, or cyclical, properties of firm-level returns.

A.  Calibration

To examine the cross-sectional implications of the model, we need to
choose parameters for the stochastic process of the firm-specific pro-
ductivity shocks, 0, and o,. They are restricted by two considerations.
First, we must generate empirically plausible levels of volatility of indi-
vidual stock returns, which directly affects statistical inference about the
relations between returns and firm characteristics. Second, we also want
to match the observed cross-sectional correlation between (the loga-
rithms of) firm value and the book-to-market ratio since, as we shall see
below, this correlation is critical in determining the univariate relations
between firm characteristics and returns.

Our goals are accomplished by setting 6§, = 0.50 and o, = 2.00. These
values imply an average annualized volatility of individual stock returns
of approximately 27 percent (a number between the 25 percent re-
ported by Campbell et al. [2001] and 32 percent reported by Vuol-
teenaho [2002]), while exactly matching the observed correlation be-
tween size and book-to-market (—.26) reported by Fama and French
(1992).

The sign of the cross-sectional relation between the conditional mar-
ket betas and firm characteristics depends on the aggregate-level vari-
ables B, — B¢ and 8 — 8/ in (28). Given our parameter choices, the long-
run average values of 8 — 3/ and ;7 — 8¢ are 0.67 and 0.21, respectively,
thus guaranteeing a negative relation between the conditional market
beta and firm size and a positive one between the conditional beta and
book-to-market. Given the negative correlation between size and book-
to-market, the signs of these partial regression coefficients will be pre-
served in univariate regressions, despite the omitted variable bias.

B.  Simulation and Estimation

Our artificial panel is carefully constructed to replicate the procedures
in Fama and French (1992). We start by constructing an artificial panel
consisting of 360 months of observations for 2,000 firms. This is com-
parable to the panel of 2,267 firms for 318 months used in Fama and
French’s study. We adhere to Fama and French’s timing conventions by
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TABLE 3
PROPERTIES OF PORTFOLIOS FORMED ON SIZE
PorTroLIO
1A 1B 2 3 4 5 6 7 8 9 10A 10B

A. Historical Data

Return 1.64 1.16 129 124 125 1.29 1.17 1.07 1.10 95 .88 .90
B 144 144 139 134 133 124 122 1.16 1.08 1.02 .95 .90
log (V) 198 3.18 3.63 410 450 489 530 5.73 6.24 6.82 7.39 8.44
log(B/V) —-.01 -21 -23 -26 -32 -36 -36 —-44 —-40 —42 —.51 —.65
B. Simulated Panel
Return 73 72 .71 .70 .69 .70 .68 .67 .66 .64 .61 .55
B 1.05 1.05 1.03 1.02 1.01 1.01 1.00 .99 .97 .95 .89 .89
log (V) 486 5.04 5.12 5.16 5.20 5.24 527 532 5.37 5.46 5.58 5.84

log(B/V) —.93 -8 -8 -84 -8 -8 —.87 —90 —97 —-1.09 —-124 -149

NoTe.—At the end of June of each year ¢, 12 portfolios are formed on the basis of ranked values of size. Portfolios
2-9 cover corresponding deciles of the ranking variables. The bottom and top two portfolios (1A, 1B, 10A, and 10B)
split the bottom and top deciles in half. The break points for the size portfolios are based on ranked values of size.
Panel A is taken from Fama and French (1992, table 2, panel A). Panel B is constructed from the simulated panel.
The average returns are the time-series averages of the monthly equal-weighted portfolio returns, in percentages. The
terms log (V) and log (B,/V)) are the time-series averages of the monthly average values of these variables in each
portfolio, and 3 is the time-series average of the monthly portfolio postranking betas.
matching accounting variables at the end of the calendar year ¢ — 1 with
returns from July of year ¢ to June of year ¢+ 1. Moreover, we also use
the values of the firm’s equity at the end of calendar year t—1 to
compute its book-to-market ratios for year ¢ — 1 and use its market cap-
italization for June of year { as a measure of its size.” In all cases we
repeat the entire simulations 100 times and average our results across
the simulations. Further details of our simulation procedure are sum-
marized in Appendix B.

Some of our tests use estimates of market betas of stock returns, which
are obtained using the empirical procedure detailed in Fama and
French (1992). Essentially, their procedure consists of two steps. First,
preranking betas for each firm and period are estimated on the basis of
the previous 60 monthly returns. Second, for each month, stocks are
grouped into 10 portfolios sorted by market value. Each portfolio is
then further divided into 10 subportfolios by sorting stocks according
to their preranking betas.® Postranking betas are then estimated for each
portfolio, and these betas are then allocated to each of the stocks within
the portfolio. We shall refer to these betas as the Fama-French betas.

C.  Size and Book-to-Market Effects

Tables 3 and 4 compare the summary statistics of our model with those
reported by Fama and French (1992). We report the postranking average

"Berk et al. (1999) use only a straightforward timing convention (one-period-lag values
of explanatory variables) that does not agree with the definitions in Fama and French
(1992).

% Sometimes the top and bottom deciles are also divided in half.
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TABLE 4
PROPERTIES OF PORTFOLIOS FORMED ON BOOK-TO-MARKET
PortroLio
1A 1B 2 3 4 5 6 7 8 9 10A  10B

A. Historical Data

Return .30 .67 .87 97 1.04 1.17 130 144 150 159 192 1.83
B 1.36 1.34 1.32 1.30 1.28 1.27 127 127 127 129 133 1.35
log (V) 4.53 4.67 4.69 456 4.47 438 423 4.06 385 351 3.06 265

log(B/V) —222 -151 -1.09 —-75 —-51 —-.32 —.14 .03 21 42 .66 1.02

B. Simulated Panel

Return .61 .65 .67 .70 .70 71 71 .71 71 .70 71 71
6 .95 98 1.01 1.02 1.02 1.02 1.03 1.02 102 1.02 1.02 1.02
log (V) 5.564 5.30 5.18 511 510 5.09 510 5.10 5.12 513 514 5.16

log(B/V) —154 -129 -115 —-1.05 —-98 —-.92 —-87 -8 —-78 —-72 —.66 —.59

NoTe.—At the end of June of each year ¢, 12 portfolios are formed on the basis of ranked values of book-to-market,
measured by log (B/V). The preranking betas use five years of monthly returns ending in June of ¢ Portfolios 2-9
cover deciles of the ranking variables. The bottom and top two portfolios (1A, 1B, 10A, and 10B) split the bottom and
top deciles in half. The break points for the book-to-market portfolios are based on ranked values of book-to-market
equity. Panel A is taken from Fama and French (1992, table 4, panel A). Panel B is taken from the simulated panel.
The average returns are the time-series averages of the monthly equal-weighted portfolio returns, in percentages. The
terms log (V) and log (B/V) are the time-series averages of the monthly average values of these variables in each
portfolio, and 8 is the time-series average of the monthly portfolio postranking betas.

returns for portfolios formed by a one-dimensional sort of stocks on
firm size and book-to-market. Panel A is taken from Fama and French
(1992) and panel B is computed on the basis of the simulated panels.

Since our model abstracts from inflation, the level of stock returns is
naturally higher in panel A. In both cases, however, the pattern of stock
returns in the model seems to match the evidence well. Similarly to the
historical data, our simulated panels show a negative relation between
average returns and firm value (table 3) and a positive relation with the
book-to-market ratio (table 4).

Table 5 shows the results from the Fama and MacBeth (1973) re-
gressions of stock returns on size, book-to-market, and the conditional
market betas implied by our theoretical model. For each simulation,
the slope coefficients are the time-series averages of the cross-sectional
regression coefficients, and the #statistics are these averages divided by
the time-series standard deviations. We also report empirical findings
of Fama and French (1992) and simulation results of Berk et al. (1999)
in columns 1 and 2 of the same table. For completeness, figure 3 shows
the histogram of the realized #statistics across simulations.

Our first univariate regression shows that the logarithm of firm market
value appears to contain useful information about the cross section of
stock returns in our model. The relation between returns and size is
significantly negative. Moreover, the average slope coefficient as well as
the corresponding #statistic are close to their empirical values reported
by Fama and French (1992). Figure 3a also shows that the empirical
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TABLE 5
ExacT REGRESSIONS
High Low
Fama-French Berk et al. Benchmark Variance Persistence
1) (2) (3) (4) (5)
log (V) —.15 —.035 —.139 —.172 —.141
(—2.58) (—.956) (—2.629) (—3.016) (—2.729)
log (B/V) 50 .082 107 103
(5.71) (1.955) (2.274) (2.341)
log (V) —.11 —.093 —.127 —.156 —.121
(—1.99) (—2.237) (—2.516) (—2.875) (—2.446)
log (B/ V) 35 393 045 053 052
(4.44) (2.641) (1.225) (1.261) (1.340)
B —.37 .642 1.048 1.193 1.050
(—1.21) (2.273) (2.629) (2.634) (2.454)
log (V) -.17 .053 .033 .022 .035
(—38.41) (1.001) (518) (.323) (.524)
B .892 1.085 .859
(2.933) (3.337) (2.893)
log (B/V) 014 .020 024
(.385) (.452) (.604)
B .15 377 916 1.115 914
(.46) (1.542) (3.079) (3.482) (3.106)
Note.—This table lists summary statistics for the coefficients and the tstatistics of Fama-MacBeth regressions using

exact conditional 8 on the simulated panel sets. The dependent variable is the realized stock return, and independent
variables are market beta, the logarithm of the market value, log (V)), and the logarithm of the book-to-market ratio,
log (B,/V,). Col. 1 gives the empirical results obtained by Fama and French (1992, table 3), using the historical returns
of 2,267 firms over 318 months. Col. 2 gives the results obtained by Berk et al. (1999). Col. 3 reports the regression
results for our model under benchmark parameterization in Sec. IIIA. Col. 4 reports the results from the model with
the calibrated parameter values 6, = 0.50 and o, = 2.50 such that the average individual volatility is 30 percent, which
is higher than the benchmark case of 27 percent. Col. 5 reports the results from the model with the calibrated parameter
value 6, = 0.40 such that the persistence level is now lower. The regression coefficients are in percentage terms. The
numbers in parentheses are tstatistics. The coefficients in the columns are in percentage terms. The numbers in
parentheses are their corresponding tstatistics. Both coefficients and #statistics are averaged across 100 simulations.

value of the #statistic is well within the body of realizations produced
by the model.

The second univariate regression confirms the importance of the
book-to-market ratio in explaining the cross-sectional properties of stock
returns. While both our slope coefficient and #statistic are smaller than
the values obtained by Fama and French (1992), our estimates are pos-
itive and, as figure 3a shows, the coefficient of book-to-market is often
quite significant at traditional levels. In Section I1C, we argued that the
book-to-market ratio in our model is related to expected returns because
it is a proxy for firm productivity; that is, firms with a higher book-to-
market ratio tend to be less productive and therefore have higher sys-
tematic risk. Figure 4 shows that, in our model, a negative relation also
exists between the book-to-market ratio and firm profitability, defined
as the ratio of profits (output) to book value. Firms with a low book-
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F16. 3.—Size and book-to-market in cross-sectional regressions. a, The histogram of #
statistics of univariate regressions of returns on size. 4, The histogram of #statistics of
univariate regressions of returns on book-to-market across 100 simulations. ¢, The scatter
plot of #statistics on size and book-to-market. d, The scatter plot of #statistics on size and
Fama-French (FF) beta in a joint regression of returns.

to-market are more productive than firms with a high book-to-market
both before and after the portfolio formation date, with the difference
in productivity declining over time. This pattern is also qualitatively
consistent with the empirical results reported in Fama and French (1995,
fig. 2).

Regressing returns on size and book-to-market jointly, we find that,
on average, our coefficients have the same signs as in Fama and French
(1992) and Berk et al. (1999). While our average size slope and the
corresponding fstatistic are close to the empirical values, the average
slope on book-to-market is again smaller than in Fama and French
(1992). Figure 3¢ illustrates the range of tstatistics in a joint regression
of returns on size and book-to-market. Each point corresponds to a
realization of two ¢statistics obtained in a single simulation. It is clear
that, while the observed tstatistic on the size variable is comparable to
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0.15

0
Formation Year

F1G6. 4.—Value factor in earnings. This figure illustrates the relation between the book-
to-market ratio and firm profitability in the simulated data. It shows the 11-year evolution
of profitability for book-to-market portfolios. Growth (value) indicates the portfolio con-
taining firms in the bottom (top) 30 percent of the values of book-to-market ratios. Prof-
itability (or return on book equity) is measured by (AB,+ D,)/B,,, where B, denotes
the book value of equity and D is the dividend payout. Thus profitability equals the ratio
of common equity income for the fiscal year ending in calendar year ¢ to the book value
of equity for year {— 1. The profitability of a portfolio is defined as the sum of AB, +
D, for all firms j in a portfolio divided by the sum of B,_,; thus it is the return on book
equity by merging all firms in the portfolio. For each portfolio formation year ¢, the ratios
of (AB,,+ D, )/B,,,, are calculated for year ¢+ i = —5, ..., 5. The ratio for year
t+ i is then averaged across portfolio formation years. Time 0 in the horizontal axis is
the portfolio formation year.

typical realizations produced by the model, the tstatistic on book-to-
market is usually lower than that in Fama and French (1992).

These first three regressions in table 5 conform to the intuition that
size and book-to-market are related to systematic risks of stock returns
and therefore have explanatory power in the cross section. The fourth
row of table 5 shows, however, that when we control for market beta,
both the average coefficient on size and the corresponding #statistic are
close to zero. Within our theoretical framework, firm characteristics add
no explanatory power to the conditional market betas of stock returns.
This is not surprising since the market betas are sufficient statistics for
instantaneous expected returns in our model. As shown in Section III,
even at monthly frequency, the market portfolio is almost perfectly cor-
related with the pricing kernel.

To reconcile our results with the poor empirical performance of beta,
one must take into account the fact that we have been using exact
conditional betas, which are not observable in practice. Instead, betas
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must be estimated, which leaves room for measurement error.” Given
the relation between beta and firm characteristics in (28), this mea-
surement error in beta will also have an effect of creating a role for size
and book-to-market as predictors of expected returns.

To illustrate the impact of beta mismeasurement, we now apply the
Fama and French (1992) estimation procedure to our simulated data.
Table 6 provides preliminary evidence on the relation between the Fama
and French beta and average returns. As in the data, we find that after
stocks have been sorted by size, variation in beta sort produces very little
variation in average returns.

As table 7 shows, using the Fama-French beta significantly changes
our results. Now, beta is, on average, statistically insignificant whereas
size remains both negative and significant even in a joint regression
with beta. The scatter plot in figure 3d shows that the ¢statistic on the
Fama-French beta is usually far below 1.96, whereas the coefficient on
size often appears significant.

Table 8 presents a measure of the noise in the construction of the
Fama-French beta. It shows the average correlation matrix (standard
errors included) between the true conditional betas, Fama-French betas,
size, and book-to-market. It is easy to see that while the exact conditional
beta is highly negatively correlated with size, the correlation with the
Fama-French beta is much lower. Not surprisingly then, size serves as a
more accurate measure of systematic risk than Fama-French beta and
hence outperforms it in a cross-sectional regression.

The relation between expected returns, firm size, and market beta in
our model is drastically different from that in the partial equilibrium
model of Berk et al. (1999), who report that in a joint regression, firm
size enters with a positive coefficient, on average; the loading on the
Fama-French beta is positive and significant. Both in our model and in
the Berk et al. model, the firm size proxies for the relative value of the
firm’s growth options. However, while in our model growth options are
driven by the same risk factor as the assets in place and are relatively
more risky, in the model of Berk et al., the growth options load only
on the interest rates and therefore have a relatively low risk premium.
Such a difference in the properties of growth options could explain why
the two models have very different implications for the joint behavior
of returns, firm size, and the market beta.

? Potential sources of errors are, among others, the fact that the market proxy used in
estimation is not the mean-variance efficient portfolio (Roll 1977) or the econometric
methods employed in estimation do not adequately capture the conditional nature of the
pricing model (e.g., Ferson, Kandel, and Stambaugh 1987; Jagannathan and Wang 1996;
Ferson and Harvey 1999; Campbell and Cochrane 2000; Lettau and Ludvigson 2001).
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TABLE 6
AVERAGE RETURNS FOR PORTFOLIOS FORMED ON S1ZE (Down) AND THEN BETA (Across)

Al Low-8 B2 @3 B4 p>5 (6 p-7 B8 B9 Highp
A. Average Monthly Returns (Percent) from Fama and French (1992)

All 1.25 1.34 1.29 1.36 1.31 1.33 128 1.24 121 125 1.14
Small market
equity 152 1.71 157 1.79 1.61 150 150 1.37 1.63 150 1.42

Market equity 2 1.29 1.25 1.42 136 1.39 1.65 1.61 1.37 1.31 134 1.11
Market equity 3 1.24 1.12 131 1.17 1.70 1.29 1.10 1.31 1.36 1.26 .76
Market equity 4 1.25 127 1.13 154 1.06 1.34 1.06 1.41 1.17 1.35 .98
Market equity 5 1.29 1.34 142 139 148 1.42 1.18 1.13 1.27 1.18 1.08
Market equity 6 1.17 1.08 153 1.27 1.15 1.20 1.21 1.18 1.04 1.07 1.02
Market equity 7 1.07 .95 1.21 1.26 1.09 1.18 1.11 124 .62 1.32 .76
Market equity 8 1.10 1.09 1.05 1.37 1.20 1.27 .98 1.18 1.02 1.01 94
Market equity 9 .95 98 88 1.02 1.14 1.07 123 .94 .82 .88 .59
Large market

equity .89 1.01 93 1.10 94 94 89 103 .71 .74 .56
B. Average Monthly Returns (Percent) from Simulated Panel
All .67 67 68 67 68 .68 .68 .67 .68 .68 .67
Small market
equity 20072 72 2 o2 73 72 72 73072 72

Market equity2 .71 .70 .71 71 71 70 72 .71 .70 .71 .70
Market equity 3 .70 .70 70 70 71 69 70 70 69 .71 .70
Market equity 4 .69 .69 69 69 .71 .70 .70 .67 .70 .69 .68
Market equity 5 .70 .70 7270 70 71 71 .69 .70 .69 .68
Market equity 6 .68 .64 .68 .68 .67 .70 .69 .68 .69 .69 .70
Market equity 7 .67 .65 .66 .65 .68 .68 .68 .67 .65 .69 .65
Market equity 8 .66 .64 .67 65 67 .68 .66 .66 .64 .67 .65
Market equity 9 .64 .61 .65 61 65 .63 .63 .64 .66 .64 .65
Large market

equity .58 .61 56 55 57 55 .63 58 61 .59 .56

NoTE.—Panel A is identical to panel A of table 1 in Fama and French (1992), in which the authors report average
returns for 100 size-3 portfolios using all New York Stock Exchange, American Stock Exchange, and NASDAQ stocks
from July 1963 to December 1990 that meet certain Center for Research in Security Prices-Compustat data requirements.
Panel B is produced using our simulated panel data set. The portfolio-sorting procedure is identical to that used in
Fama and French’s study. In particular, portfolios are formed yearly. The break points for the size deciles are determined
in June of year { using all the stocks in the panel. All the stocks are then allocated to the 10 size portfolios using the
break points. Each size decile is further subdivided into 10 beta portfolios using preranking betas of individual stocks,
estimated with five years of monthly returns ending in June of year t. The equal-weighted monthly returns on the
resulting 100 portfolios are then calculated for July of year ¢ to June of year ¢+ 1. The preranking betas are the sum
of the slopes from a regression of monthly returns on the current and prior month’s market returns. The average
return is the time-series average of the monthly equal-weighted portfolio returns (percent). The All column shows
statistics for equal-weighted size-decile (market equity) portfolios and the All rows show statistics for equal-weighted
portfolios of the stocks in each beta group.

Sensitivity Analysis

Columns 4 and 5 of tables 5 and 7 report the effects of alternative
choices for the parameters, 6, and o, governing the cross-sectional prop-
erties of stock returns. Column 4 in these tables looks at the effects of
increasing the cross-sectional dispersion of stock returns to 30 percent,
which corresponds to a value for o, of 2.50. Column 5 studies the effects
of changing the persistence of the idiosyncratic productivity shocks by
raising the value of 0, to 0.4. In both cases it is easy to see that our main
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TABLE 7
FAMA-FRENCH REGRESSIONS
Fama- High Low
French Berk et al. Benchmark Variance Persistence
(1) 2) (3) ) %)
log (V) —-.15 —.035 —.139 —.172 —.141
(—2.58) (—.956) (—2.629) (—3.016) (—2.729)
log (B/V) .50 .082 .107 .103
(5.71) (1.955) (2.274) (2.341)
log (V) —.11 —.093 —-.127 —.156 —.121
(—1.99) (—2.237) (—2.516) (—2.875) (—2.446)
log (B/V) .35 .393 .045 .053 .052
(4.44) (2.641) (1.225) (1.261) (1.340)
B -.37 .642 133 178 214
(—1.21) (2.273) (.429) (.690) (.727)
log (V) —.17 .053 —.121 —.151 —.108
(—3.41) (1.001) (—2.057) (—2.298) (—1.821)
B .15 377 .590 721 .605
(.46) (1.542) (2.158) (2.472) (2.367)

Notk.—This table lists summary statistics for the coefficients and the tstatistics of Fama-MacBeth regressions using
the estimated Fama-French 8 on the simulated panel sets. See also the note to table 5.

results appear to be robust. In all cases, both the signs and significance
of all the coefficients are preserved.

D.  Business Cycle Properties

The theoretical characterization of stock prices and systematic risk, as
given by (27) and (28), highlights the fact that the properties of the
cross section of stock prices and stock returns depend on the current
state of the economy. This dependence is captured by the economywide
variables p(x,), Z)(x,), and V’ and their market betas. Thus our model
also gives rise to a number of predictions about the variation of the

TABLE 8
CROSS-SECTIONAL CORRELATIONS

True B Fama-French 3 log (B/ V) log (V)
True B 1 .598 .324 —.764
(.028) (.022) (.012)
Fama-French 3 1 270 —.758
(.031) (.036)
log (B/ V) 1 —.262
(.019)

log (V) 1

NoTE.—We calculate the cross-sectional correlations of exact conditional beta, Fama-French beta, book-to-market,
and size for every simulated panel every month and then report the average correlations across 100 simulations. The
numbers in parentheses are cross-simulation standard deviations.
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cross section of stock prices and returns over the business cycle. These
properties of the cross section of stock returns may have important
implications for optimal dynamic portfolio choice.

Firm Characteristics

To help understand the relation between the cross section of firm char-
acteristics and the business cycle, we first characterize the cross-sectional
dispersion of firm market values. To this end, let Var () denote the
variance of the cross-sectional distribution of a firm-specific variable 4.
According to our characterization of firm market value (27), it follows
immediately that

. 2
Vi Px)K, k;
V. (—ﬁ) = [V L~ D=
ar v v ar ;ﬂ/’ (€; )KJ

2
Px)K, k;
+|————| V —. 30
7] Var Z}/K (30)

The right-hand side of (30) captures the cross-sectional dispersion of
relative firm size. This dispersion can be attributed to (i) the cross-
sectional variation of project-specific productivity shocks ¢, as well as
projectspecific and firm-specific production scale and (ii) economywide
variables p(x,), p(x,), and K,/ V.

The contribution of the firm heterogeneity, captured by

54

iely

Var

and

Var

2 (= 1) ﬁ]
ity ! K/
is clearly path-dependent in theory, since the scale of new projects de-
pends on the current aggregate scale of production K, Intuitively, how-
ever, this dependence is fairly low when the average lifetime of individual
projects is much longer than the average length of a typical business
cycle."

It falls then on the aggregate components to determine the cross-
sectional variance in market value. Given the properties of our envi-
ronment, it is easy to see that this implies that the cross-sectional dis-
persion of firm size is countercyclical; that is, it expands in recessions

' Note that the average project life is about 1/6 = 25 years, given our calibration.
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F16. 5.—Business cycle properties (I). This figure illustrates the business cycle properties
of some aggregate and cross-sectional variables. a, p(x)K/V (the solid line) and
p(x)K/V (the dashed line) plotted as functions of x. b, Log of the price-dividend ratio,
log (V/D), as a function of log(X). ¢, Size (log[V]) dispersion as a function of
log (V/D). d, Dispersion of book-to-market (log [B/V]) as a function of log (V/D).

and becomes compressed in expansions. We can see this by looking at
figure 2d. Since the market betas of p(x,) and Z)(xt) are less than one,
the ratios p(x,)K,/V, and %(xt)K[/ V, should be negatively related to the
state variable x, Figure 5 confirms this finding.

To quantify this relation, we simulate our artificial economy over a
200-year period and compute the cross-sectional standard deviation of
the logarithm of firm values and book-to-market ratios on a monthly
basis. Since the state variable x, is not observable empirically, we choose
to capture the current state of the economy by the price-to-dividend
ratio of the aggregate stock market."

Figure 5 presents scatter plots of the cross-sectional dispersion of firm
characteristics against the logarithm of the aggregate price-dividend
ratio. In both cases the relation is clearly negative. Note that cross-

" In the model, the unconditional correlation between x, and log (V,/D,) is 98.8 percent.
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F16. 6.—Return dispersion over the business cycle. This figure plots the cross-sectional
dispersion of the firm-level stock returns, RD, = \Var (R,), against log (V,/D),).

sectional dispersion is not a simple function of the state variable partially
because we are using a finite number of firms and projects in our sim-
ulation; therefore, our theoretical relations hold only approximately.
Moreover, as suggested by the theoretical argument above, such relations
are inherently history-dependent.

Stock Returns

Next we study how the cross-sectional distribution of actual stock returns
depends on the state of the aggregate economy. First, we analyze the
degree of dispersion of returns, RD, = yVar (R,), where R, denotes
monthly returns on individual stocks. We construct a scatter plot of
RD, versus contemporaneous values of the logarithm of the aggregate
price-dividend ratio.

According to figure 6, our model predicts a negative contempora-
neous relation between return dispersion and the price-dividend ratio.
This can be attributed to the countercyclical nature of both aggregate
return volatility, as shown in figure 74, and the dispersion in conditional
market beta, as shown in figure 7b.

Since investment in our model is endogenously procyclical, an in-
crease in aggregate productivity shock is accompanied by an increase
in the rate of investment and hence a higher growth rate of the scale
of production, as well as an increase in stock prices. On the other hand,
since investment is irreversible, the scale of production cannot be easily
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F16. 7.—Business cycle properties (II). This figure illustrates the business cycle properties
of some aggregate and cross-sectional variables. a, Conditional stock market return vol-
atility plotted as a function of the log price-dividend ratio, log (V/D). b, Cross-sectional
dispersion of the firm-level market betas, Var (8,), plotted against log (V,/D)).

reduced during periods of low aggregate productivity, increasing vola-
tility of stock prices."

The countercyclical dispersion of conditional betas follows from the
characterization of the systematic risk of stock returns (28) and the
pattern observed in figure 2d. During business cycle peaks, the disper-
sion of aggregate betas, that is, 37, 8;, and £/, is relatively low, contrib-
uting to lower dispersion of firm-level market betas. This effect is then
reinforced by the countercyclical behavior of dispersion of firm char-
acteristics. In this respect our model matches the empirical regularity
pointed out by Chan and Chen (1988, n. 6), that the cross-sectional
spectrum of conditional market betas of size-sorted portfolios contracts
during business cycle booms and expands during business cycle troughs.

An interesting empirical finding by Stivers (2001) is the ability of
return dispersion to forecast future aggregate return volatility, even after
one controls for the lagged values of market returns. We conduct a
similar experiment within our model by simulating monthly stock re-
turns and regressing absolute values of aggregate market returns on
lagged values of return dispersion and market returns. As in Stivers’
study, we allow for different slope coefficients depending on the sign
of lagged market returns. As shown in table 9, return dispersion retains
significant explanatory power even after we control for market returns
in the regression. The reason is that lagged market returns provide only
a noisy proxy for the current state of the economy. At the same time,
return dispersion contains independent information about the current

'? Qualitatively, the impact of the irreversibility on conditional volatility of stock returns
in our model is similar to that in Kogan (2000, 2001).
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TABLE 9
CROSS-SECTIONAL RETURN DISPERSION AS A PREDICTOR OF MARKET VOLATILITY
JoiNnT JoinT
COEFFICIENT b=0 6 =0 R
b, b, s G b,=0 6=0 (%)
A. Results from Stivers (2001)

Full model .365 11 —.157 221 10.08 2.69 10.45

(3.61) (1.40) (—2.94) (1.84) (.000) (.069)
B. Simulation Results

Full model 918 .016 .019 .008 8.467 .949 3.72

(3.408) (.233) (.285) (.059) (.035) (.534)

NoTe.—This table illustrates the intertemporal relation between market volatility and the lagged cross-sectional return
dispersion (RD). The volatility is measured by the absolute value of the market excess return. Variations of the following
model are estimated as follows:

|R| = a+ bRD_ ., + bl RDy + 6| Ry |+ 6l ol R <O R, | + e,

where | R/| is the absolute value of the market excess return, RD, is the cross-sectional standard deviation of the individual
stock returns, 1, ., is a dummy variable that equals one when the market excess return is negative and zero otherwise,
and ¢, is the residual. All #statistics are adjusted with respect to heteroscedasticity and autocorrelation using the Newey-
West procedure. For the Ftest on joint restrictions, the pvalues are in parentheses. Panel A is taken from Stivers (2001),
which uses 400 firm returns from July 1962 to December 1995. Panel B is generated as the average coefficients and
statistics across repeated simulations.

state of the economy and hence the conditional stock market volatility,
as shown in figure 6.

Conditional Size and Book-to-Market Effects

The fact that dispersion of returns on individual stocks in our model
changes countercyclically suggests that the size and book-to-market ef-
fects analyzed in subsection C are also conditional in nature. To capture
this cyclical behavior of cross-sectional patterns in returns and its im-
plications for dynamic portfolio allocation, we analyze the conditional
performance of alternative size- and value-based strategies. Specifically,
we simulate 1,000 years of monthly individual stock returns and then
form zero-investment portfolios by taking a long position in bottom-
size-decile stocks and a short position in top-size-decile stocks, as sorted
by size, with monthly rebalancing. We also construct alternative port-
folios by doing the opposite for book-to-market deciles. We then regress
portfolio returns on the logarithm of the aggregate price-dividend ratio.

Our model predicts an average annualized value (book-to-market)
premium of 1.47 percent and an average annualized size premium of
1.62 percent. Moreover, both strategies exhibit significant countercycli-
cal patterns in their expected returns. In particular, we find that a 10
percent decline in the log price-dividend ratio below its long-run mean
implies approximately a 25 percent and 6 percent increase in expected
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returns on the size and book-to-market strategies, respectively, measured
as a fraction of their long-run average returns.

V. Conclusion

This paper analyzes a general equilibrium production economy with
heterogeneous firms. In the model, the cross section of stock returns
is explicitly related to firm characteristics such as size and book-to-mar-
ket. Firms differ in the share of their total market value derived from
their assets, as opposed to future growth opportunities, which is cap-
tured by their characteristics. Since these two components of firm value
have different market risk, firm characteristics are closely related to
market beta.

To the best of our knowledge, our paper is the first to explain the
cross section of stock returns from a general equilibrium perspective.
Our model demonstrates that size and book-to-market can explain the
cross section of stock returns because they are correlated with the true
conditional beta. We also provide an example of how empirically esti-
mated beta can perform poorly relative to firm characteristics because
of measurement errors.

Our model also gives rise to a number of additional implications for
the cross section of returns. In this paper, we focus on the business cycle
properties of returns and firm characteristics. Our results appear con-
sistent with the limited existing evidence and provide a natural bench-
mark for future empirical studies.

Appendix A
Proofs and Technical Results
A.  Proof of Proposition 1

The value of an ongoing project ¢ is the present value of the future stream of
cash flows, e* "¢, , k, taking into account that the project can expire at the

i

random rate 6. Hence

P(xl’ eit’ k[) = Etlf eaml,rﬂ(eXH\Ei,,H»ski)dl}
0

= k1[ f e‘é’E,[M,,H.‘e*“‘]E,[ei,m]dx},
0

where the equality follows from mutual independence of X, and ¢,. Given (2),
it follows that

El[ei,/+;:| = 6,,870“-‘,- (1 —_ efaéx),
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which implies that

P(x, €, k) = k,-[ f ePE[M, . 0" e e+ (1 8"“)164

0

0 0

= k,-[ f COEIM,,, 0 1ds + f e“**’J»E,[Ml,mexw]<e,-,—1>ds}
= kp(x) + plx)(e,— DI,

where p(x,) and p(x,) depend only on x, since M,,,, is a function of x, and x,,,
and x, is a univariate Markov process.

B.  Proof of Proposition 2

Equation (17) is the resource constraint (16). As we have seen in Section IIA,
the optimal firm investment policy p(x) is defined by

o c Vv
—\s 3 —85 Xyt d Al
J; ¢ (CH) (%) % (A1)

where we now impose that optimal consumption decisions are used in deter-
mining the pricing kernel in equilibrium. When we use the resource constraint
(16) and the accumulation equation (9), it follows that

plx) = E

px) = (C)E,

exﬁw
87 (N+8)s dl‘]
J;) (Cor /K )KL

Xits

= (C)'E, J e | - "
o {gx”\ — QZ[p('va)]?}K’y exXp [Fl 776 + ’sz(xt)dﬂ

= {e* — L2l p(x)*Po(x),

where the Feynman-Kac theorem implies then that ¢(x) satisfies the differential
equation (see, e.g., Duffie 1996, app. E):

exp (x) —o.

N+ (=)0 + W) — Ap)] — —— P =
fe* = Yelp(a1*r
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C.  Proof of Proposition 3

Let m, = (C)™ and M,,,, = ¢ ¥m,,,/m, and by Ito’s lemma,

BiM,—11 = B2 e 2 e LT e
t tt+dt - faS —o mlacl t lea(cl)g “t
Yoo Iyy+1) . .
= —Amdt——mE[dC] + ————="m E[dC]>.
m, Ctml [dC] 5 () m,E [dC]
Another application of Ito’s lemma yields
C(x, K C(x, K
ppcy = S0 KD e g pl Gl K
K, K,
= C(x, K)lzp(x) — dldt+ A[Clx, K)dt,
2
. |9°Clx, K)|
@c)® = T ox? ]057
where
) _dC(x, K) 10%C(x, K)
A[C(x, K)] = 0. (x— +- - 2,
[C(x, K)] = 0,(x— x) o 5 ot
As a result,
2
AlC(x, K)I 1 o|0In Clx, K)
=N+ =8l +y—— — —y(y + Do/ .
7, Ylzp(x,) — 8] +y O K) 27(7 )o, ox,

Now, the value of the aggregate stock market, V, can be computed as

fMt,t+sDt+sdl}

0

o0 c Vv

fem(_é) C,ﬂd:]

0 Ct+.

fe“(%)wlddd%

0 K.

v . 1y

= (%) K,E,lf e’)“(%) exp

0 t+s

= {e““ - %Z[p(xz)]2}7¢(xz)K/’

V=E

=E

t

= (C)E,

J’ —(1=yd+ (1 —y)zp(x,)dr d%

0
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where ¥(x) satisfies the following differential equation:
N (x) = {e = J2[p(1*) " + (1 = )ep(x) — 81 (x)

—0,(x— DY (0) + 502" (x).

Appendix B
Some Details of Computation

We use a finite, large number of firms in the numerical implementation. While
the number of firms is fixed, the total number of projects in the economy is
time-varying and stationary. We let the scale of new projects be proportional to
the aggregate production scale in the economy, which ensures stationarity of
the cross-sectional distribution of the number of projects per firm. Thus &, =
K /o, where the constant ¢ controls the long-run average number of projects in
the economy, N*. On average, projects expire at the total rate 6N*. The arrival
rate of new projects is zp(x)e. Therefore, ¢ is defined from the equation
2E[p(x)]e = 6N".

In the simulation, time increment is discrete. The unit costs of new projects
are spaced out evenly over the interval (0, p(x,)]. The investment of an individual
firm at time ¢is computed as the total amount the firm spends on its new projects
at time ¢. The dividend paid out by a given firm during period ¢ is defined as
the difference between the cash flows generated by the firm’s existing projects
and its investment. Finally, the individual firm’s book value is measured as the
cumulative investment cost of the firm’s projects that remain active at time ¢.

In our simulation, we first generate 200 years’ worth of monthly data to allow
the economy to reach steady state. After that, we repeatedly simulate a 420-
month panel data set consisting of the cross-sectional variables (360 months of
data constitute the main panel, and 60 extra months are used for preranking
B estimation).
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